
Convolutional Memory Blocks for Depth Data Representation Learning

Keze Wang1,2, Liang Lin1,3∗, Chuangjie Ren1, Wei Zhang3, and Wenxiu Sun3

1 School of Data and Computer Science, Sun Yat-sen University, China
2 The Hong Kong Polytechnic University

3 Sensetime Group Limited
{kezewang,chuangjieren,irene.wenxiu.sun}@gmail.com,

linliang@ieee.org, wayne.zhang@sensetime.com

Abstract
Compared to natural RGB images, data captured
by 3D / depth sensors (e.g., Microsoft Kinect) have
different properties, e.g., less discriminable in ap-
pearance due to lacking color / texture information.
Applying convolutional neural networks (CNNs)
on these depth data would lead to unsatisfying
learning efficiency, i.e., requiring large amounts of
annotated training data for convergence. To ad-
dress this issue, this paper proposes a novel mem-
ory network module, called Convolutional Mem-
ory Block (CMB), which empowers CNNs with
the memory mechanism on handling depth data.
Different from the existing memory networks that
store long / short term dependency from sequen-
tial data, our proposed CMB focuses on modeling
the representative dependency (correlation) among
non-sequential samples. Specifically, our CMB
consists of one internal memory (i.e., a set of fea-
ture maps) and three specific controllers, which en-
able a powerful yet efficient memory manipulation
mechanism. In this way, the internal memory, be-
ing implicitly aggregated from all previous inputted
samples, can learn to store and utilize represen-
tative features among the samples. Furthermore,
we employ our CMB to develop a concise frame-
work for predicting articulated pose from still depth
images. Comprehensive evaluations on three pub-
lic benchmarks demonstrate significant superiority
of our framework over all the compared methods.
More importantly, thanks to the enhanced learning
efficiency, our framework can still achieve satisfy-
ing results using much less training data.

1 Introduction
With the rapid development of inexpensive commodity depth
sensors, depth data representation learning is ubiquitous in
many applications such as robotic systems [McColl et al.,
2011]. Compared to RGB data which provides information

∗Corresponding author is Liang Lin (Email: linliang@ieee.org).

Input

Controller

Memory

Controller

Output

Controller

Input feature map

Output feature map

… …

concatenate

LoadSave

Load

Load

Iteration t-1 Iteration t Iteration t+1

Internal 

Memory

Internal 

Memory

Figure 1: Detailed architecture of our proposed Convolutional Mem-
ory Block (CMB). The CMB consists of one internal memory
(i.e., a set of feature maps) and three specific convolutional con-
trollers, which can manipulate the internal memory and extract im-
plicit structural representation from the input feature map. Specif-
ically, the old internal memory from the previous training iteration
is loaded by the input and memory controller. Then, the memory
controller fuses its memory representation and the response of the
input controller, and saves the fused representation to be the new
internal memory. After that, the output controller loads the new in-
ternal memory to generate memory representation, which is further
concatenated with the input feature map to be the final output.

about appearance and texture, depth data, reflecting the dis-
tance information between the objects and the sensor, are less
discriminable. Recently, deep convolutional neural networks
(CNNs) have been applied by many methods [Haque et al.,
2016; Wang et al., 2016] for depth data analysis. Due to the
heavy sensor noise of depth data and the huge parameters of
used deep CNNs, these methods require plenty of well anno-
tated samples to train from scratch to achieve the satisfactory
performance. However, collecting and annotating on depth
data is extremely laborious and time-consuming. It will be
beneficial to design a more intelligent network architecture
with better learning efficiency on depth data, i.e., to surpass
the state-of-the-art performance even with less training data.

In this paper, we propose a novel memory network module,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2790



Convolutional 

Memory Block

Convolutional 

Memory Block

Convolutional 

Memory Block

Figure 2: An overview of the proposed convolutional memory block embedded framework for estimating articulated poses.

called Convolutional Memory Block (CMB), inspired by the
recent work of Neural Turing Machine [Graves et al., 2014].
Considering the special properties of depth data, e.g., low dis-
criminability in appearance due to lacking color / texture in-
formation, we leverage the memory mechanism to enhance
the pattern abstracting of CNNs by reusing their rich implicit
convolutional structures and spatial correlations among the
training samples. Specifically, the proposed CMB consists of
three specific convolutional controllers and one internal mem-
ory (i.e., a set of feature maps) as shown in Figure 1. The
convolutional controller is designed to process the input fea-
ture map from the previous layer and manipulate the internal
memory. Different from ConvLSTM [Shi et al., 2015] and
ConvGRU [Ballas et al., 2016] that require time-series data,
the proposed convolutional controller performs convolution
in a hierarchical organization via several convolutional lay-
ers with batch normalization. This ensures that our proposed
CMB is capable of extracting more abstract information from
non-sequential training samples to augment image-dependent
feature representation. Specifically, our CMB intends to cap-
ture and store the representative dependencies or correlations
among training samples according to specific learning tasks,
and further employ these stored dependencies to enhance the
representation of convolutional layers. In this way, our CMB
encourages the CNN architecture to be lightweight and re-
quire less training data.

Since articulated (e.g., human body or hand) pose estima-
tion is one of the most dominant applications in depth data
representation learning, we develop a simple yet effective
articulated pose estimation framework to validate the effec-
tiveness of our CMB by applying it to enhance the convo-
lutional layers. Recently, highly accurate and real-time per-
formance on human pose estimation from depth data has been
achieved by deep learning based methods [Haque et al., 2016;
Wang et al., 2016]. Nevertheless, all methods borrow CNN
architectures from RGB data analysis. None of them consid-
ers how to improve the learning efficiency in the perspective
of handling depth images. Motivated by the design principles
from stacked hourglass [Newell et al., 2016], our developed
framework has a lightweight hourglass-like architecture, as il-
lustrated in Figure 2. Our CMB contributes to collaboratively
regress the heat map of each joint by providing the cached
representative feature maps, which are aggregated from pre-
vious inputted samples.

The main contributions of this work are summarized as
follows: (i) we propose a novel Convolutional Memory Block
(CMB) to promote the representation and learning efficiency
of convolutional layers for handling depth data; (ii) we ap-

ply our CMB to develop a simple yet effective framework for
articulated pose estimation from depth images. Extensive ex-
periments on three public benchmarks not only demonstrate
the superiority of our framework over all the compared meth-
ods, but also prove our framework can obtain comparable per-
formance with much less training data.

2 Related Work
Neural Networks with Memory. To model the temporal dy-
namics and dependency, Recurrent Neural Networks (RNNs),
particularly Long Short-Term Memory (LSTM) [Hochre-
iter and Schmidhuber, 1997] and Gated Recurrent Unit
(GRU) [Cho et al., 2014], have been proposed and achieved
the remarkable performance on many vision tasks (e.g., se-
mantic parsing [Liang et al., 2016]). More recently, the
Convolutional Long Short-Term Memory model (ConvL-
STM) [Shi et al., 2015] and Convolutional Gated Recurrent
Unit (ConvGRU) [Ballas et al., 2016] have been proposed
to consider the correlations among neighboring pixels in the
spatial domain by enabling convolutional operations among
its gates, hidden states and memory cells.

Besides above-mentioned models, various memory mecha-
nisms have been proposed to enable neural networks to model
sequential data by explicitly remembering variables and data
over long timescales. The existing memory network models
can be divided into content-based addressing and location-
based addressing according to their accessing memory man-
ners. The location-based addressing (e.g., [Graves et al.,
2014]) leverages a module so-called controller to receive in-
put data and further store or retrieve valuable information
from an external memory via the looked up address, while the
content-based addressing (e.g., [Graves et al., 2016]) focuses
on reading from or writing to the memory to obtain the rel-
evant memory cells or representations instead. Specifically,
Neural Turing Machines [Graves et al., 2014] was first pro-
posed to use an external memory to solve some algorithmic
problems via location addressing. [Na et al., 2017] proposed
to design the read network and the write network that consist
of multiple convolutional layers.

Articulated Pose Estimation from Depth Data. Re-
cently, several works [Shotton et al., 2011; 2013; Jung et al.,
2015] have achieved promising performances on articulated
pose estimation such as human and hand pose estimation.
[Shotton et al., 2011] designed an intermediate body parts
representation that maps the difficult pose estimation prob-
lem into a simpler per-pixel classification problem. [Jung et
al., 2015] proposed to introduce a regression tree to estimate
human poses by applying a supervised gradient descent and

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2791



MCMC like random sampler in the form of Markov random
walks. More recently, improved performances have also been
achieved by deep learning based methods [Haque et al., 2016;
Wang et al., 2016]. Specifically, [Haque et al., 2016] pre-
sented a viewpoint invariant model by combining CNN and
RNN with a top-down error feedback mechanism to self-
correct previous pose estimates in an end-to-end manner.
[Wang et al., 2016] proposed an inference embedded multi-
task learning framework, which is implemented with a deep
architecture of neural networks with two cascaded tasks.

The advanced network architectures [Wei et al., 2016;
Newell et al., 2016; Grinciunaite et al., 2016] for estimat-
ing human poses from RGB images have also been proposed.
[Wei et al., 2016] provided a sequential human pose pre-
diction framework for learning rich implicit spatial models.
[Newell et al., 2016] proposed to design network architec-
ture by processing features across all scales and consolidate
them to best capture the various spatial relationships associ-
ated with the body. However, directly applying these archi-
tectures to the depth data is unfeasible due to the different
challenges and requirements between the RGB data and the
depth data. For instance, the depth images usually include
heavy sensor noises and preserve coarse appearance details.

3 Convolutional Memory Blocks
As illustrated in Figure 1, our proposed Convolutional Mem-
ory Block (CMB) consists of one internal memory (a set of
feature maps) and three convolutional controllers for facili-
tating the internal memory manipulation. The internal mem-
ory is designed to store the learned implicit image-dependent
structural features, and is denoted as M ∈ Rcm×hm×wm ,
where cm, hm, wm are the capacity, height, width of the fea-
ture map, respectively. Different from the widely used neural
controllers [Weston et al., 2015; Park et al., 2017] which use
full connections to perform input-to-state and state-to-state
transitions, our proposed convolutional controller leverages
the convolution operator to process the input feature map
from the previous neural layer, and further manipulates the
internal memory in both the training and testing phase. Fig-
ure 1 also illustrates three specific convolutional controllers in
our proposed CMB, i.e., input controller, memory controller
and output controller.

Inspired by the design principles from [Szegedy et al.,
2015], our proposed convolutional controllers share the same
elaborately crafted structure, which leverages a hierarchical
organization of convolutional layers rather than a simple con-
volutional layer as ConvLSTM [Shi et al., 2015] and Con-
vGRU [Ballas et al., 2016]. This ensures that the convo-
lutional controller is able to extract rich and high-level im-
plicit structural features. As illustrated in Figure 3, each con-
troller first concatenates both the input feature map and in-
ternal memory, and further employs a single 3×3 convolu-
tional layer, Batch Normalization (BN) layer, Rectified Lin-
ear Units (ReLU), 1×1 convolutional layer and another BN
layer to obtain the intermediate feature map. For ease of im-
plementation, the channel number and stride of all the con-
volutional layers are the same. As reported by [Zhang et al.,
2018], the 1×1 convolutional layer is imposed to help the in-

Concatenate

+

+

Figure 3: Detailed illustration of our convolutional controller.

formation flow across different channels of the feature map.
For the convenience of the formulation, we simply denote the
operations with the convolutional controller as the function
φ(·). Note that, to simplify the further calculation, the out-
put response of each convolutional kernels all share the same
size with the input feature map. For each specific convolution
controller, the intermediate feature map is further processed
individually. In the following, we will introduce these three
specific convolutional controllers in the training and testing
phase formally.

3.1 Input Controller
Given the incoming feature map x ∈ Rc×h×w, the input con-
troller, denoted as CI(·), performs three operations in the t-th
training mini-batch. Firstly, it concatenates x and the old in-
ternal memory Mt−1 from the previous (t− 1)-th training it-
eration, and further extracts the internal feature representation
via ωi. Finally, it passes the internal feature representation to
the memory controller. The whole process can be formulated
as follows:

CI(x) = φ(x⊕Mt−1;wi), (1)

where ⊕ denotes the concatenate operation. The function
φ(·) denotes the operations (i.e., passing through 3×3 convo-
lutional layer, BN, ReLU, 1×1 convolutional layer, BN and
ReLU) illustrated in Figure 3, where wi is the corresponding
parameter set.

3.2 Memory Controller
Motivated by the recent memory network [Santoro et al.,
2016], our designed memory controller enables to flexibly
write / read complex and abstract information into the inter-
nal memory. Specifically, given the incoming feature map x
and the output of CI(x), the memory controller CM (·) trans-
forms the old memory Mt−1 into Mt to make it more rep-
resentative and general for some intended future use in two
steps. Firstly, it generate the memory representation CM (x)
for x by using the internal memoryMt−1 (updated in the pre-
vious mini-batch) with the similarity between x and Mt−1 as
weights. Formally, we have:

CM (x) = φ
(
x⊕ (clip[ 1

r
,r](

Mt−1

x
) ∗ x);wm

)
, (2)

where “*” implies the Hadamard product and wm denotes the
corresponding parameter set of the memory controller. The
operation clip[1/r,r](Mt−1/x)∗x, inspired from [Ioffe, 2017],
denotes only fetching the memory that is similar to x under
the empirically constraint of r, i.e., too big or too small value
insideMt−1/xwill be set as 1

r and r, respectively. Intuitively,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2792



this operation is feasible since not all the memory items are
beneficial for the current input feature map x. Those items
from the internal memory that have small distances to x may
be informative to enhance x. Note that, we set r=1 in the
beginning to disable the contribution of Mt−1 since the in-
ternal memory may not contain much valuable information.
In the middle of the training (e.g., 10000 training iteration),
we change r into 3 in all experiments to extract some relevant
information from Mt−1. Once obtained the memory repre-
sentation CM (x) and CI(x) for the input x, we calculate the
new internal memory Mt as:

Mt = CM (x) + CI(x). (3)

3.3 Output Controller
Given the new internal memoryMt, the output controller, de-
noted as CO(·), outputs the new memory representation for
the input feature map as:

CO(x) = φ(x⊕Mt;wo), (4)

where wo is the parameter set for the other operations inside
the output controller. Finally, the memory representation CO

is concatenated with the input feature map x and passed to the
next neural layer, while the updated internal memory Mt will
be further optimized after performing backward propagation
for the next training iteration.

3.4 Training and Testing Details
Since all above-mentioned formulations are differentiable,
we can directly employ the standard back propagation algo-
rithm [LeCun et al., 1990] to fine-tune the CMB parameters
in the training phase. Note that, the internal memory map
is randomly initialized at the start of the training and then is
uninterruptedly updated without resetting to zero.

In the testing phase, we fix all the parameters inside our
CMB, which has been well optimized during the training.
Note that, since we expect our CMB to learn to store the in-
formative / representative patterns among samples, the data
for both training and testing are randomly shuffled to encour-
age the internal memory to cache task-specific features via a
fully data-driven manner.

3.5 Comparing CMB to ConvLSTM / ConvGRU
Our CMB is entirely different from the ConvLSTM and Con-
vGRU, although it seems similar to them. The detailed dis-
similarities are listed as follows: (i) Memory Mechanism.
Similar to the LSTM, the ConvLSTM employs the memory
cells and hidden states to describe the hidden representation
for general-purpose sequence modeling. Therefore, the Con-
vLSTM requires sequential inputs to obtain a reliable hid-
den representation during the training and testing phase. The
ConvGRU also faces the same issue. Whereas, the internal
memory of our proposed CMB adapts to no-sequential in-
puts by directly fusing with the feature representation of the
under-processing sample. Thus, our CMB can be used to
store the representative spatial correlations among samples
for training; (ii) Output Generation. Unlike the ConvLSTM
and ConvGRU that consider the updated hidden states as the
final output, our CMB directly leverages the newly updated

Layer Index 1 2 3 4 5
Layer Name conv1 1 conv1 2 max1 CMB1 conv2 1

Channel(kernel-stride) 32(3-1) 32(3-1) 32(2-2) 32 64(3-1)

Layer Index 6 7 8 9 10
Layer Name max2 CMB2 conv3 1 conv3 2 max3

Channel(kernel-stride) 64(2-2) 64 128(3-1) 128(3-1) 128(2-2)

Layer Index 11 12 13 14 15
Layer Name CMB3 conv4 1 conv4 2 neareast concatenate

upsampling conv3 2
Channel(kernel-stride) 128 256(3-1) 256(3-1) 256 384

Layer Index 16 17 18 19 20
Layer Name conv5 neareast concatenate conv6 conv7

upsampling conv2 1
Channel(kernel-stride) 128(3-1) 128 196 64(3-1) K(1-1)

Table 1: Details of the proposed articulated pose estimation frame-
work. The scalar K is set according to the number of body joints.

internal memory to process the input feature map to generate
outputs. Moreover, our CMB naturally concatenates the out-
put representation and the input feature map to form a resid-
ual representation as [He et al., 2016]. This ensures that all
the information can be passed directly through the CMB, i.e.,
our CMB can provide additional feature map enhancement
without corrupting the input feature map.

4 CNN with Convolutional Memory Blocks
To clarify the effectiveness of the proposed CMB, we have
developed a concise yet powerful framework for articulated
pose estimation by embedding the CMB into an hourglass-
shape network (see Figure 2), which is inspired by designing
principles of the architecture in [Newell et al., 2016]. Re-
garding the articulated pose estimation as a problem of deep
regression as [Tompson et al., 2014], our developed frame-
work takes a depth image as input, and outputs a dense heat
map for each joint (e.g., the body part of human). Note that,
the heat map denotes a per-pixel likelihood of being the joint.
The coordinates of maximum value of the predicted heat map
will be treated as the center position of the target body joint.

As illustrated in Table 1, our framework is stacked by ten
convolutional layers, three max-pooling layers and two con-
catenate layers to form an hourglass shape as [Newell et al.,
2016]. The kernel size of all the convolutional layers are set
to 3×3 with a stride of 1, and three max-pooling layer are
set to have 2×2 with a stride of 2. The detailed parameters
for our framework can be found in Table 1. It is obvious that
our framework contains two downsampling-upsampling steps
(resulting in three different scales of feature maps, which are
denoted in different colors) to capture the various spatial re-
lationships associated with the pose from the depth image.
Therefore, We impose three individual CMBs (i.e., no param-
eters are shared) to enhance these three kinds of feature maps.

5 Experiments
Dataset Description. We have evaluated the estimation per-
formance of our framework on the newly created Kinect2 Hu-
man Pose Dataset (K2HPD) [Wang et al., 2016], which in-
cludes about 100K clean depth images with various human
poses under three challenging scenarios. We have also used
the Invariant-Top View Dataset (ITOP) dataset [Haque et al.,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2793



Method PHR CPM SH IEML Ours
PDJ (0.05) 26.8 30.0 41.0 43.2 58.8
PDJ (0.10) 70.3 58.5 73.7 64.1 89.0
PDJ (0.15) 84.7 87.8 84.6 88.1 94.8
PDJ (0.20) 91.3 93.6 89.0 91.0 97.1

Average 68.3 67.5 72.1 71.6 84.9

Table 2: Detailed comparison of the estimation accuracy on the
K2HPD benchmark using the PDJ metric.

Method 3DCNN PHR CPM SH Ours
Head 48.6 83.2 69.9 81.6 92.9
Neck 50.9 83.3 71.8 87.3 97.2

Shoulders 52.6 82.4 71.1 86.2 95.2
Elbows 45.5 71.2 65.7 77.9 90.4
Hands 42.1 65.7 65.9 73.4 86.7
Writs 42.6 63.4 63.3 72.5 86.0
Torso 54.6 80.8 70.4 85.5 96.6
Hips 55.0 73.9 66.8 81.2 93.5

Knees 50.1 82.7 74.8 86.9 92.0
Feet 45.4 81.4 72.7 91.3 94.3

Upper Body 47.0 74.2 67.8 79.7 91.3
Lower Body 51.5 79.3 70.9 86.0 93.9
Full Body 48.9 76.3 69.1 82.3 92.4

Table 3: Detailed comparison of the estimation accuracy on the
K2HPD benchmark using the PCKh@0.5 metric.

2016], which contains large amount of real-world depth im-
ages from two different camera viewpoints by 20 actors per-
forming 15 sequences each. Moreover, we have conducted
the experiment on the hand-depth image dataset [Xu and
Cheng, 2013] named ASTAR, which consists of 870 depth
images of captured by a time-of-flight camera with a data-
glove. For a fair comparison on these benchmarks, we follow
the same training and testing setting as their officially defined.

Compared Methods. For human pose estimation on
the ITOP benchmark, we have compared our framework
with Random Forest (RF) [Shotton et al., 2013], Random
Tree Walk (RTW) [Jung et al., 2015], Iterative Error Feed-
back (IEF) [Carreira et al., 2016], and Viewpoint Invariant
(VI) [Haque et al., 2016]. On the K2HPD benchmark, we can
compare our framework with Inference Embedded Multi-task
Learning (IEML) [Wang et al., 2016]. In order to justify the
advancement of our framework on depth-based human pose
estimation, we have also considered the RGB-based human
pose estimation approaches. We have made a quantitative
comparison with five RGB-based state-of-the-art methods,
i.e., 3DCNN [Grinciunaite et al., 2016], Part Heat-map Re-
gression (PHR) [Bulat and Tzimiropoulos, 2016], Convolu-
tional Pose Machines (CPM) [Wei et al., 2016], and Stacked
Hourglass (SH) [Newell et al., 2016]. To directly apply the
state-of-the-art RGB-based network architectures to handle
the depth data (having a single channel), we need to reduce
the input channel of these networks from 3 to 1 and train them
from scratch on the above-mentioned benchmarks.

Evaluation Metric. To measure the accuracy of predict-
ing human body joints, we employ the popular Percent of
Detected Joints (PDJ) metric [Toshev and Szegedy, 2014],
Percentage of Correct Key points (PCKh@0.5), and 10cm-
rule [Haque et al., 2016] as the evaluation criteria. Specifi-
cally, the PDJ metric considers a body joint is correctly esti-
mated only if the distance between the predicted and the true

Method RF RTW IEF VI Ours
Head 63.8 97.8 96.2 98.1 97.0
Neck 86.4 95.8 85.2 97.5 98.5

Shoulders 83.3 94.1 77.2 96.5 75.1
Elbows 73.2 77.9 45.4 73.3 64.7
Hands 51.3 70.5 30.9 68.7 85.0
Torso 65.0 93.8 84.7 85.6 94.5
Hips 50.8 80.3 83.5 72.0 88.4

Knees 65.7 68.8 81.8 69.0 84.2
Feet 61.3 68.4 80.9 60.8 82.9

Upper Body 70.7 84.8 61.0 84.0 80.6
Lower Body 59.3 72.5 82.1 67.3 86.5
Full Body 65.8 80.5 71.0 77.4 83.4

Table 4: Comparison of the estimation accuracy on the ITOP (front-
view) using the 10cm-rule metric.

Method PHR CPM SH IEML Ours
Time 62 72 56 40 14

Model Size 570 525 418 - 58
Complexity 63.1 85.0 30.7 - 5.4

Table 5: Comparison of the average running time (milliseconds per
image), model size (MB) and model complexity (GFLOPs) on the
K2HPD benchmark. Note that, ‘-’ denotes the result is not available.

Ours GroundtruthSHCPM

Figure 4: Qualitative comparison between our framework and the
compared state-of-the-art methods on the K2HPD benchmark. The
estimated joints are directly shown in the images. It is obvious that
our framework can obtain much more accurate estimations than the
compared methods. Best viewed in color.

joint position is within a certain fraction of the torso diame-
ter. The PCKh@0.5 metric recognizes the estimated joint po-
sition as correct if its distance to the ground truth joint in the
image space is within 50% of the head segment length (i.e.,
the distance between the head and neck joints). The 10cm-
rule metric identifies the correct prediction when the distance
between the predict joint and the ground truth joint is less
than 10cm in the 3D world coordinate defined by Kinect.

Implement Details. All our experiments are carried out on
a desktop with Intel 3.4 GHz CPU and NVIDIA GTX-980Ti
GPU. In order to reduce overfitting, we employ the image
horizontal-flipping and rotating strategy to augment the train-
ing data. As for the training process, we train our model from
scratch by Adam optimizer [Kendall and Cipolla, 2016] with
the batch size of 16 and the initial learning rate of 0.00025,
β1=0.9, β2=0.999. An exponential learning rate decay is ap-
plied with a decay rate of 0.95 every 1000 training iterations.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2794



5.1 Results and Comparisons
Table 2 demonstrates the comparison results under both the
PDJ and PCKh@0.5 on the K2HPD benchmark. As one can
see from Table 2, our framework significantly outperforms
all the compared state-of-the-art methods under every nor-
malized precision threshold. This validates that our frame-
work is more suitable for estimating human poses from depth
data, compared with those state-of-the-art methods for RGB
data. The similar significant performance gain can also be ob-
served in Table 3. Specifically, our framework has obtained
the highest accuracy on all types of body joints. Some visual
comparison results are shown in Figure 4.

The comparison results on the ITOP dataset (front-view)
are illustrated in Table 4. As shown, it is obvious that our
framework dramatically surpasses all the compared methods
on the estimation accuracy of full body by a clear margin,
and is significantly superior to others. Note that, since the
prediction of our framework is 2D, we build upon the heat
map layer by two fully connected layers with 1024 neurons
to regress 3D predictions.

To further evaluate our framework on the small-scale data,
we have conducted the 3D hand pose estimation experi-
ment on the ASTAR benchmark, which only provides 435
images for training. The median/mean joint error is re-
garded as evaluation metric, and obtained after submitting
the estimated hand pose coordinates to the official evalua-
tion server. The median/mean joint errors of our framework
is 10.02/11.42mm, and is nearly 100% better than the current
state-of-the-art method [Xu et al., 2015], which only achieves
21.1/22.7 mm. This validates that our framework is general
to the small-scale hand pose estimation task.

To verify the contribution of our CMB to make network
lightweight, we further quantitatively perform real-time anal-
ysis of our framework and the compared approaches (except
for 3DCNN, which requires sequential data) on the K2HPD
dataset. As demonstrated in Table 5, our method runs about
70fps, and performs about 4 times faster than the best of the
compared approaches. The reason is that the model size of
our method is only 58MB with the complexity 5.4GFLOPS,
nearly 10, 6 and 5 times smaller than the compared PHR,
CPM and SH, respectively. This demonstrates that the supe-
rior performance of our framework, thanks to the employed
lightweight architecture with moderate parameters.

5.2 Component Analysis
To perform the detailed component analysis of our frame-
work, we have conducted the following experiment on the
K2HPD benchmark to validate the contributions of the intro-
duced CMB. Specifically, we have discarded all the CMBs
inside our proposed framework, and directly employ the con-
volutional layers to estimate human poses. This variant ver-
sion of our framework reflects the pure performance of the
fully convolutional networks, and is denoted as “Ours w/o
CMB”. We have also conducted two variants of our frame-
work by replacing the convolutional memory block with Con-
vLSTM [Shi et al., 2015] and ConvGRU [Ballas et al., 2016],
and denote them as “Ours w/ ConvLSTM” and “Ours w/ Con-
vGRU”, respectively. Note that, these two variants require se-
quential data for training and testing, i.e., the action sequence

Method Ours w/o Ours w/ Ours w/ Ours w/ Ours w/ Ours w/ Ours
CMB ConvGRU ConvLSTM Sequence Half Double

Head 91.9 94.3 91.2 97.2 97.2 97.7 92.9
Neck 95.4 92.7 95.3 97.1 96.9 97.9 97.2

Shoulders 92.7 91.1 92.8 95.2 94.9 96.0 95.2
Elbows 84.6 85.6 86.3 90.7 90.8 90.9 90.4
Hands 81.5 80.1 82.3 86.7 86.7 87.1 86.7
Writs 79.9 80.6 81.8 85.8 85.8 87.0 86.0
Torso 89.2 92.3 92.8 96.0 95.6 97.0 96.6
Hips 74.3 86.3 85.2 92.3 91.8 93.8 93.5

Knees 80.8 78.4 85.2 91.5 90.5 90.2 92.0
Feet 90.2 87.0 90.9 93.9 93.7 93.7 94.3

Upper Body 87.4 87.0 88.1 91.7 91.6 92.3 91.3
Lower Body 82.7 85.6 88.0 93.3 92.7 93.5 93.9
Full Body 85.4 86.4 88.1 92.3 92.1 92.8 92.4

Table 6: Detailed comparison of the estimation accuracy for compo-
nent analysis on the K2HPD benchmark using the PCKh@0.5 met-
ric. The entries with the best values for each row are bold-faced.

Input Feature Maps Memory Maps Enhanced Results

... ... ...

Figure 5: The visualization of the selected input feature maps, its
corresponding memories, and the enhanced results by the memory.
As shown, for each input feature map, several high response regions
belonged to the background are heavily suppressed, while those of
human body are mainly preserved.

for each subject are sequentially fed into the network with-
out shuffling. Given the same sequential data, we have also
trained and tested our framework (denoting as “Ours w/ Se-
quence”. To further analyze the performance of the internal
memory capacity of the CMB, we have modified the feature
map number of the internal memory inside the CMBs. Specif-
ically, the “Ours w/ Half” denotes the variant of Ours that the
feature map number is decreased to half of its original, while
the “Ours w/ Double” denotes the channel number is dou-
bled. The original memory capacity of CMB is the same as
the channel of the input feature map from the previous layer.

Table 6 demonstrates the PCKh@0.5 comparison results.
As one can see from Table 6, there lies a significant perfor-
mance gap between our method and all the competing meth-
ods. This highlights the superiority of our proposed CMB.
Thanks to the proposed CMB, the representation of the con-
volutional layers inside our framework has been significantly
enhanced. Moreover, without requiring sequential training
data, our framework even performs about 6% and 4% bet-
ter than the Ours w/ convGRU and Ours w/ ConvLSTM, re-
spectively. More importantly, our framework achieves sim-

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2795



ilar performance as the Ours w/ Sequence. This proves the
superior performance of our CMB in storing the representa-
tive features for human pose estimation from non-sequential
depth data. As one can see from Table 6, the estimation accu-
racy of our framework slightly increase from 92.1% to 92.8%
as the memory capacity inside the CMB grows from Ours
w/ Half to Ours w/ Double. The reason may be that larger
memory capacity can store richer implicit structural features
for convolutional layer augmentation. However, larger mem-
ory capacity can also bring much more computational cost
(nearly double). Therefore, we employ the current capacity
to achieve a trade-off between the accuracy and efficiency.

Moreover, since the memory map contributes to store the
abstraction patterns for reusing the rich implicit convolutional
structures of CNNs and spatial correlations among the train-
ing samples, we demonstrate that how the internal memory
enhances the input feature maps in Figure 5. It is obvious
that the memory maps can enhance the input feature maps
by suppressing their high response regions of the background
and preserving their human body regions. The reason is that
the background regions can not be well represented by the
internal memory. This demonstrates the effectiveness of our
proposed CMB.

5.3 Evaluation with Insufficient Training Data
To further explore the effectiveness of our framework under
the insufficient training data setting, we have fine-tuned our
framework with different percentages of training data on the
K2HPD benchmark using the PCK@0.5 metric. We have also
compared our framework with Ours w/o CMB to validate the
contribution of the proposed CMB. For a fair comparison, we
have evaluated a variant of our method (denoted as “Ours w/
Convs”) by replacing CMB with convolutional layers in a fair
number of parameters and similar architecture. Specifically,
we directly duplicate the input feature map to replace the in-
ternal memory for each convolutional controller.

The detailed estimation accuracy with standard deviation
of 5 repeated trails using the PCK@0.5 metric is listed in
Figure 6. As the percentage of training data increases, the in-
creased estimation accuracy can be gradually obtained. How-
ever, the accuracy of our framework obtains a steady growth
with small deviation from 10% to 100% of training data,
while that of Ours w/o CMB increases sharply with large de-
viation. Especially, under the 10% training data setting, our
framework performs nearly 11% better than Ours w/o CMB.
Moreover, Ours w/ Convs performs significantly better than
Ours w/o CMB due to the additional introduced convolutional
parameters. However, our framework still consistently out-
performs Ours w/ Convs by clear margins when the percent-
age of used training data is small. This comprehensively val-
idates the significant contribution of the CMB on improving
learning efficiency when given insufficient training data.

6 Conclusion
This paper presented a novel memory network module called
Convolutional Memory Block (CMB) for improving the
learning efficiency and representation of CNNs on still depth
images, which lack of color / texture information. The CMB

Percentage of training data
10% 20% 30% 50%

Av
er

ag
e 

ac
cu

ra
cy

65

70

75

80

85

90

Ours
Ours w/o CMB
Ours w/ Convs

Figure 6: Experimental study on the average estimation accuracy
with standard deviation under various percentages of training data
from K2HPD using PCK@0.5 metric.

is designed to enable the memory mechanism of convolu-
tional layers by leveraging an internal memory with three spe-
cific controllers to store the rich representative structural fea-
tures and spatial correlations among training samples. Based
on the proposed CMB, we have developed a concise yet pow-
erful articulated pose estimation framework, which employs
three CMBs to enhance its three different scales of convo-
lutional feature maps. Extensive experiments validated the
effectiveness and efficiency of our CMB and framework. In
the future, we will extend our CMB to support depth video
data for other tasks, e.g., human action/activity recognition.

Acknowledgments
This work was supported in part by the Hong Kong Poly-
technic University’s Joint Supervision Scheme with the Chi-
nese Mainland, Taiwan and Macao Universities (Grant no.
G-SB20). This work was also supported in part by Na-
tional Natural Science Foundation of China (NSFC) under
Grant U1611461 and Grant 61702565, in part by Science
and Technology Planning Project of Guangdong Province
of No.2017B010116001, in part by Guangdong “Climbing
Program” Special Funds under Grant pdjhb0010, in part by
NSFC-Shenzhen Robotics Projects under Grant U1613211,
and the Fundamental Research Funds for the Central Univer-
sities. We thanks a lot for the pleasant discussion with Guan-
grun Wang.

References
[Ballas et al., 2016] N. Ballas, L. Yao, C. Pal, and

A. Courville. Delving deeper into convolutional networks
for learning video representations. In ICLR, 2016.

[Bulat and Tzimiropoulos, 2016] Adrian Bulat and Georgios
Tzimiropoulos. Human pose estimation via convolutional
part heatmap regression. In ECCV, pages 717–732, 2016.

[Carreira et al., 2016] J. Carreira, P. Agrawal, K. Fragki-
adaki, and J. Malik. Human pose estimation with iterative
error feed- back. In CVPR, page 4733–4742, 2016.

[Cho et al., 2014] Kyunghyun Cho, Bart Van Merriënboer,
Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares,

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2796



Holger Schwenk, and Yoshua Bengio. Learning phrase
representations using rnn encoder-decoder for statistical
machine translation. In EMNLP, pages 1724–1734, 2014.

[Graves et al., 2014] A. Graves, G. Wayne, and I. Danihelka.
Neural turing machines. In arXiv:1410.5401, 2014.

[Graves et al., 2016] A. Graves, G. Wayne, M. Reynolds,
T. Harley, I. Danihelka, A. Grabska-Barwinska, S. G. Col-
menarejo, E. Grefenstette, T. Ramalho, J. Agapiou, and
et al. Hybrid computing using a neural network with dy-
namic external memory. Nature, 538:471–476, 2016.

[Grinciunaite et al., 2016] Agne Grinciunaite, Amogh Gudi,
Emrah Tasli, and Marten den Uyl. Human pose estimation
in space and time using 3d cnn. In Gang Hua and Hervé
Jégou, editors, ECCV Workshops, 2016.

[Haque et al., 2016] Albert Haque, Boya Peng, Zelun Luo,
Alexandre Alahi, Serena Yeung, and Li Fei-Fei. Towards
viewpoint invariant 3d human pose estimation. In ECCV,
pages 160–177, 2016.

[He et al., 2016] Kaiming He, Xiangyu Zhang, Shaoqing
Ren, and Jian Sun. Deep residual learning for image recog-
nition. CVPR, pages 770–778, 2016.

[Hochreiter and Schmidhuber, 1997] S. Hochreiter and
J. Schmidhuber. Long short-term memory. Neural
Computation, 9(8):1735–1780, 1997.

[Ioffe, 2017] Sergey Ioffe. Batch renormalization: Towards
reducing minibatch dependence in batch-normalized mod-
els. In Advances in Neural Information Processing Sys-
tems (NIPS), pages 1945–1953, 2017.

[Jung et al., 2015] Ho Yub Jung, Soochahn Lee, Yong Seok
Heo, and Il Dong Yun. Random tree walk toward instanta-
neous 3d human pose estimation. In CVPR, pages 2467–
2474, 2015.

[Kendall and Cipolla, 2016] A. Kendall and R. Cipolla.
Modelling uncertainty in deep learning for camera relo-
calization. In ICRA, pages 4762–4769, 2016.

[LeCun et al., 1990] Y. LeCun, B. Boser, J.S. Denker,
D. Henderson, R.E. Howard, W. Hubbard, L.D. Jackel, and
D. Henderson. Handwritten digit recognition with a back-
propagation network. In NIPS, pages 396–404, 1990.

[Liang et al., 2016] Xiaodan Liang, Xiaohui Shen, Donglai
Xiang, Jiashi Feng, Liang Lin, and Shuicheng Yan. Se-
mantic object parsing with local-global long short-term
memory. In CVPR, pages 3185–3193, 2016.

[McColl et al., 2011] Derek McColl, Zhe Zhang, and Goldie
Nejat. Human body pose interpretation and classification
for social human-robot interaction. IJSR, 3(3):313, Jun
2011.

[Na et al., 2017] Seil Na, Sangho Lee, Jisung Kim, and Gun-
hee Kim. A read-write memory network for movie story
understanding. In ICCV, pages 677–685, 2017.

[Newell et al., 2016] Alejandro Newell, Kaiyu Yang, and Jia
Deng. Stacked hourglass networks for human pose esti-
mation. In ECCV, pages 483–499, 2016.

[Park et al., 2017] Cesc Chunseong Park, Byeongchang
Kim, and Gunhee Kim. Attend to you: Personalized im-
age captioning with context sequence memory networks.
In CVPR, pages 6432–6440, 2017.

[Santoro et al., 2016] Adam Santoro, Sergey Bartunov,
Matthew Botvinick, Daan Wierstra, and Timothy Lill-
icrap. Meta-learning with memory-augmented neural
networks. In ICML, pages 1842–1850, 2016.

[Shi et al., 2015] Xingjian Shi, Zhourong Chen, Hao Wang,
Dit-Yan Yeung, Wai kin Wong, and Wang chun Woo. Con-
volutional lstm network: A machine learning approach for
precipitation nowcasting. In NIPS, pages 802–810, 2015.

[Shotton et al., 2011] J. Shotton, A. Fitzgibbon, M. Cook,
T. Sharp, M. Finocchio, R. Moore, A. Kipman, and
A. Blake. Real-time human pose recognition in parts from
single depth images. In CVPR, pages 1297–1304, 2011.

[Shotton et al., 2013] Jamie Shotton, Toby Sharp, Alex Kip-
man, Andrew Fitzgibbon, Mark Finocchio, Andrew Blake,
Mat Cook, and Richard Moore. Real-time human pose
recognition in parts from single depth images. Commun.
ACM, 56(1):116–124, 2013.

[Szegedy et al., 2015] Christian Szegedy, Wei Liu, Yangqing
Jia, Pierre Sermanet, Scott Reed, Dragomir Anguelov,
Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabi-
novich. Going deeper with convolutions. In CVPR, pages
1–9, 2015.

[Tompson et al., 2014] Jonathan Tompson, Arjun Jain, Yann
Lecun, and Christoph Bregler. Joint training of a convo-
lutional network and a graphical model for human pose
estimation. In NIPS, pages 1799–1807, 2014.

[Toshev and Szegedy, 2014] A. Toshev and C. Szegedy.
Deeppose: Human pose estimation via deep neural net-
works. In CVPR, pages 1653–1660, 2014.

[Wang et al., 2016] Keze Wang, Shengfu Zhai, Hui Cheng,
Xiaodan Liang, and Liang Lin. Human pose estima-
tion from depth images via inference embedded multi-task
learning. In ACM MM, pages 1227–1236, 2016.

[Wei et al., 2016] Shih-En Wei, Varun Ramakrishna, Takeo
Kanade, and Yaser Sheikh. Convolutional pose machines.
In CVPR, pages 4724–4732, 2016.

[Weston et al., 2015] Jason Weston, Sumit Chopra, and An-
toine Bordes. Memory networks. In ICLR, 2015.

[Xu and Cheng, 2013] C. Xu and L. Cheng. Efficient hand
pose estimation from a single depth image. In ICCV, pages
3456–3462, 2013.

[Xu et al., 2015] Chi Xu, Ashwin Nanjappa, Xiaowei Zhang,
and Li Cheng. Estimate hand poses efficiently from single
depth images. IJCV, 116(1):21–45, 2015.

[Zhang et al., 2018] Xiangyu Zhang, Xinyu Zhou, Mengx-
iao Lin, and Jian Sun. Shufflenet: An extremely effi-
cient convolutional neural network for mobile devices. In
CVPR, 2018.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

2797


