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Discriminant feature extraction plays a central role in pattern recognition and classification. In this
paper, we propose the tensor linear Laplacian discrimination (TLLD) algorithm for extracting discriminant
features from tensor data. TLLD is an extension of linear discriminant analysis (LDA) and linear Laplacian
discrimination (LLD) in directions of both nonlinear subspace learning and tensor representation. Based
on the contextual distance, the weights for the within-class scatters and the between-class scatter can be
determined to capture the principal structure of data clusters. This makes TLLD free from the metric of
the sample space, which may not be known. Moreover, unlike LLD, the parameter tuning of TLLD is very
easy. Experimental results on face recognition, texture classification and handwritten digit recognition
show that TLLD is effective in extracting discriminative features.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

Discriminant feature extraction is an important topic in pattern
recognition and classification. Principal component analysis (PCA)
and linear discriminant analysis (LDA) are two traditional algorithms
for linear discriminant feature extraction. Bothmethods involve scat-
ters computed in the Euclidean metric, i.e., the underlying assump-
tion is that the sample space is Euclidean. Both PCA and LDA have
found wide application in pattern recognition and computer vision.
For example, they are known as the famous Eigenfaces method and
Fisherfaces method in face recognition [2], respectively. And many
variants of LDA have shown good performance in various applica-
tions [9,12,20–22,27]. As the data manifold may not be linear, some
nonlinear discriminant feature extraction algorithms, e.g., locality
preserving projections (LPP) [8] and linear Laplacian discrimination
(LLD) [31], have recently been developed. In addition, the kernel trick
[15] is also widely applied to extend linear feature extraction algo-
rithms to nonlinear ones by performing linear operations in a higher
or even infinite dimensional space transformed by a kernel mapping
function.

It is worth noting that most of the existing discriminant analysis
methods are vector based, i.e., the input data are always (re)arranged
in a vector form regardless of the inherent correlation among differ-
ent dimensions. In practice, vector-based methods have been found

∗ Corresponding author. Tel.: +85231634327; fax: +85226035032.
E-mail addresses: wzhangee@hotmail.com (W. Zhang), zhoulin@microsoft.com

(Z. Lin), xtang@ie.cuhk.edu.hk (X. Tang).

0031-3203/$ - see front matter © 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.patcog.2009.01.010

to have some intrinsic problems [26]: singularity of within-class
scatter matrices, limited available projection directions and high
computational cost. Much work has been done to deal with these
problems [20–22,4,5]. Recently, several tensor-based methods have
been proposed as alternatives to overcome these drawbacks. Tensor-
based methods respect the dimensional structure of data, hence can
extract better discriminant features robustly. They perform well par-
ticularly when the number of samples is relatively small, a case in
which vector-based methods often suffer the singularity problem.
Along this line, Ye et al.'s 2DLDA [29] and Yan et al.'s DATER [26] are
the tensor extensions of the popular vector-based LDA algorithm.
And tensor LPP [6,7] is an extension of LPP, also preserving local
neighbor structures of tensor samples. All these methods work in
tensor spaces with Euclidean metrics if metrics are to be used.

Despite the success of various subspace learning algorithms, we
notice that almost all of them rely on the Euclidean assumption on
the data space when computing the distance between samples, un-
less the appropriate metric for the data space is known, e.g., KL diver-
gence or �2 distance are suitable for histogram-based data. Distance
metric learning attempts to learn metrics from data. However, it has
mainly focused on finding a linear distance metric that optimizes
the data compactness and separability in a global sense [23,24,28].
It is computationally expensive when treating high-dimensional
data, and no current nonlinear dimensionality reduction approaches
can learn an explicit nonlinear metric [28]. Approximated geodesic
distance [18], which attempts to estimate the distances among sam-
ples, could help alleviate, but also not resolve, the issue of metrics.
For example, a slenderly distributed cluster can have large geodesic
distance between the samples, which makes distance-based cluster
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Fig. 1. Visualization of the multiplication of an (m1×m2×m3)-tensor A with matrices
V1 ∈ R

m′
1×m1 , V2 ∈ R

m′
2×m2 , and V3 ∈ R

m′
3×m3 . This figure is adapted from [10].

analysis error-prone. Actually, what is more important is the struc-
ture of the data, rather than the absolute distance between the data
samples.

From the above observations, we propose the tensor linear Lapla-
cian discrimination (TLLD) method for nonlinear feature extraction
from tensor data. TLLD could be viewed as an extension of both LDA
and LLD [31] in directions of nonlinearity and tensor representa-
tion. LLD has shown its superiority of feature extraction in nonlin-
ear spaces [31], but it still has all the abovementioned drawbacks of
vector-based methods because it has the same number of available
projection directions and the same null spaces of the within-class
scatter matrices as LDA (the proof is in Appendix A). And although
LLD has aimed at removing the metric assumption by introducing
weights to the scatter matrices, nonetheless the weights are still de-
fined as a function of the distance in the sample space. Therefore,
LLD still needs the a priori assumption on the metric of the sample
space. To further reduce the dependence on the metric of the sample
space, TLLD computes the weights based on the contextual distances
instead, which are measured by the contribution to the structure of
data in the sample space. This idea is inspired by the recent work
on structural perception of data [13,30]. In order to match the ten-
sor nature of data, we further extend the vector-based coding length
[13,30] to tensor coding length as the contextual set [30] descrip-
tor. Another advantage of using contextual-distance-based weights
is that tuning the time variable in the weights now becomes very
easy by rescaling. In short, TLLD handles two kinds of structure in
the sample data, the tensor structure within each individual sample
and the distributional structure across all samples, in a unified way.

The rest of this paper is organized as follows. We first present
TLLD in Section 2, then discuss the choice of the weights for scat-
ter matrices in Section 3. The experimental results are presented in
Section 4 and Section 5 concludes our paper.

2. Tensor linear Laplacian discrimination

In this section, we first give definitions of some basic tensor op-
erations. Then we present the formulation of TLLD.

2.1. Preliminaries of tensor operations

An order-n tensor is an element of the space Rm1×m2×···×mn ,
where mi (i = 1, 2, . . . ,n) are positive integers. The scalar prod-
uct of tensors A and B with the same dimensions is 〈A,B〉 =∑m1

i1=1 · · ·∑mn
in=1 Ai1,. . .,in

B
i1,. . .,in

. The Frobenius-norm of a tensor

A is given by ‖A‖ = √〈A,A〉. The k-mode product of an order-
n tensor A ∈ Rm1×m2×···×mn by a matrix V ∈ Rm′

k×mk , denoted
by A×kV , is still an order-n tensor whose entries are given by
(A×kV)i1,i2,. . .,ik−1,j,ik+1,. . .,in

= ∑mk
ik=1 Ai1,i2,. . .,ik−1,ik ,ik+1,. . .,in

Vj,ik . Fig. 1 vi-

sualizes the equation B = A×1V1×2V2×3V3 for order-3 tensors A ∈
Rm1×m2×m3 and B ∈ Rm′

1×m′
2×m′

3 . The mode-k matrix unfolding of A

is denoted by A(k) ∈ Rmk×(mk+1 . . .mnm1 . . .mk−1) [10], where the element

A
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Fig. 2. Unfolding of the (m1 ×m2 ×m3)-tensor A to the (m1 ×m2m3)-matrix A(1) , the
(m2 × m3m1)-matrix A(2) and the (m3 × m1m2)-matrix A(3) (m1 = m2 = m3 = 4). This
figure is adapted from [10].

A
i1,. . .,in

of the original tensor appears at the ik-th row and the uk-th

column of A(k), in which uk=(ik+1−1)mk+2mk+3 . . .mnm1m2 . . .mk−1+
(ik+2 − 1)mk+3 . . .mnm1m2 . . .mk−1 + · · · + (in − 1)m1m2 . . .mk−1 +
(i1 − 1)m2m3 . . .mk−1 + (i2 − 1)m3 . . .mk−1 + · · · + ik−1. An illustration
of an order-3 tensor's matrix unfolding is shown in Fig. 2. And the
k-mode product in tensor notation B = A×kV can be expressed in
terms of matrix unfolding: B(k) = VA(k).

2.2. Discriminant scatters

The strategy of LDA and LLD for discriminative feature extraction
is to simultaneously minimize the within-class variance and maxi-
mize the between-class variance of low-dimensional features after
projections. We follow this strategy but with tensor representation.

Let the samples in order-n tensor representation be Xi,
i = 1, 2, . . . ,N, where N is the total number of samples. And let si be
the label of Xi and Ns be the number of samples in the s-th class.
The total number of classes is c. Our objective is to find a group of
orthogonal projection matrices Uk ∈ Rmk×m′

k (m′
k <mk), k=1, 2, . . . ,n,

such that the projected low-dimensional tensors

Yi = Xi×1UT
1×2UT

2 . . .×nUT
n , i = 1, 2, . . . ,N (1)

haveminimalwithin-class variance andmaximal between-class vari-
ance.

Following LLD, it is natural to define the within-class scatter as
follows:

� =
c∑

s=1

∑
Xi∈�s

wi‖Yi − Y
s‖2, (2)

where Y
s = (1/Ns)

∑
Xi∈�s

Yi is the centroid of the s-th projected class,
�s = {Xi|si = s} is the set of the s-th class, and wi is the weight for
the i-th sample. Similarly, the between-class scatter is defined as

� =
c∑

s=1

wsNs‖Ys − Y‖2, (3)

where Y= (1/N)
∑

Xi∈� Yi is the centroid of all the projected samples,

� = {Xi, i = 1, 2, . . . ,N} is the set of samples and ws is the weight for
the s-th class. The choice of wi and ws will be presented in Section
3. Our goal is to find orthogonal projection matrices Uk, such that �
is minimized and at the same time � is maximized. So also adopting
Fisher's criterion, we may solve

arg max
U1,U2,. . .,Un

�
�
. (4)
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Table 1
Tensor linear Laplacian discrimination (TLLD) algorithm.

Given the sample set � = {Xi ∈ R
m1×m2×···×mn |i = 1, 2, . . . ,N}, their class labels si ∈ {1, 2, . . . , c}, and the target dimensions (m′

1,m
′
2, . . . ,m

′
n) of features.

1. Compute the weights wi , i = 1, 2, . . . ,N, and ws , s = 1, 2, . . . , c, and initialize Uk(0) = (Im′
k
×m′

k
, 0m′

k
×(mk−m′

k
))

T (k = 1, 2, . . . ,n).

2. For l = 1 : Lmax do

For k = 1 : n do

(a) Zi = Xi×1UT
1(l) . . .×k−1UT

k−1(l)×k+1UT
k+1(l − 1) . . .×nUT

n(l − 1), and compute the matrix unfolding (Zi)(k) , i = 1, 2, . . . ,N;

(b) S(k)w =∑N
i=1 wi(Zi − Z

si )(k)(Zi − Z
si )T(k) , S

(k)
b =∑c

s=1 w
sNs(Z

s − Z)(k)(Z
s − Z)T(k);

(c) Solve the trace-ratio problem (8) for Uk(l).

(d) If ‖Uk(l) − Uk(l − 1)‖<mkm′
k�, ∀k, and l>1, break;

3. Output the projection matrices Uk = Uk(l) ∈ R
mk×m′

k , k = 1, 2, . . . ,n.

2.3. Solving for projection matrices

It is hard to solve (4) for Ui (i = 1, 2, . . . ,n) simultaneously. So we
turn to iteration methods. As [6], we extend the matrix-based deduc-
tion therein to tensors to reformulate � and � by mode-k unfolding:

� =
N∑
i=1

wi‖Yi − Y
si‖2

=
N∑
i=1

wi tr[(Yi − Y
si )(k)(Yi − Y

si )T(k)]

=
N∑
i=1

wi tr[U
T
k (Zi − Z

si )(k)(Zi − Z
si )T(k)Uk]

= tr

⎧⎨⎩UT
k

⎡⎣ N∑
i=1

wi(Zi − Z
si )(k)(Zi − Z

si )T(k)

⎤⎦Uk

⎫⎬⎭ , (5)

where Zi=Xi×1UT
1×2UT

2 . . .×k−1UT
k−1×k+1UT

k+1 . . .×nUT
n , and (Zi−Z

si )(k)
is the mode-kmatrix unfolding of Zi−Z

si , in which Z
si is the centroid

of {Zj|sj = si}. And

� =
c∑

s=1

wsNs‖Ys − Y‖2

=
c∑

s=1

wsNs tr(Y
s − Y)(k)(Y

s − Y)T(k)

=
c∑

s=1

wsNs tr[UT
k (Z

s − Z)(k)(Z
s − Z)T(k)Uk]

= tr

{
UT
k

[ c∑
s=1

wsNs(Z
s − Z)(k)(Z

s − Z)T(k)

]
Uk

}
, (6)

where Z is the centroid of all Zi's.
So we arrive at the forms of the within-class scatter and the

between-class scatter under mode-k unfolding:

� = tr(UT
kS

(k)
w Uk) and � = tr(UT

kS
(k)
b Uk), (7)

where S(k)w =∑N
i=1 wi(Zi −Z

si )(k)(Zi −Z
si )T(k) is the mode-k within-class

scatter matrix and S(k)b =∑c
s=1 w

sNs(Z
s −Z)(k)(Z

s −Z)T(k) is the mode-k
between-class scatter matrix.

Therefore, we may solve

argmax
Uk

�
�

= tr(UT
kS

(k)
b Uk)

tr(UT
kS

(k)
w Uk)

(8)

for Uk successively, by fixing the rest Ui's to prepare S(k)b and S(k)w ,
and repeat this procedure until convergence. For each k, this trace-
ratio problem can be efficiently solved by the algorithm proposed
by Wang et al. [19].

As we can only obtain a locally optimal solution, the initialization
is important. Following previous literatures, e.g. [7,11,26], we initial-
ize Uk as (Im′

k×m′
k
, 0m′

k×(mk−m′
k)
)T, which we call the identity initializa-

tion.We test such initialization on real and synthetic data.We choose
four datasets (From FRGC v2, CMU PIE, USC SIPI and MNIST database,
respectively. The details are given in Section 4.) and randomly select
10 subjects and five images per subject in each dataset. We find that
for every randomly chosen target dimensions m′

1 ×m′
2 ×· · ·×m′

n, the
objective function values resulting from the identity initialization
are always almost as good as the best ones resulting from 50 times
of random initialization. The same observation persists on randomly
generated synthetic datasets. Moreover, the experiments in Section
4 show that TLLD with the identity initialization also achieve good
recognition results. So identity initialization is recommended.

Finally, we summarize the above procedure in Table 1. Note
that the target dimensions should satisfy: 1�m′

k� min{mk,
(c − 1)

∏
i� k mi} [26].

3. Definition of weights

In this section, we discuss how to choose the weights wi and ws

so as to make the TLLD algorithm complete.
Motivated by LLD [31] and Laplacian Eigenmap [3], we define the

weights in the following forms:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
wi = exp

(
−d2(Xi,�si )

t

)
, i = 1, 2, . . . ,N,

ws = exp

(
−d2(�s,�)

t

)
, s = 1, 2, . . . , c,

(9)

where d(·, ·) is some distance, t is the time variable and si is the class
label of Xi.

In LLD, the weights are simply related to the distances to the
centroids, using the metric of the sample space:⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

wi = exp

⎛⎝−‖Xi − X
si‖2

S

t

⎞⎠ , i = 1, 2, . . . ,N,

ws = exp

⎛⎝−‖Xs − X‖2
S

t

⎞⎠ , s = 1, 2, . . . , c.

(10)

For example, the authors used �2 distance because they worked on
histogram-based data. Such a definition of weights has two prob-
lems: (1) the metric of the original sample space may be unknown
and (2) the Euclidean centroids of samples may not lie on the data
manifold, hence the metric of the sample space cannot be applied
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to compute the distance between samples and the centroids. So we
should define the weights in another way.

3.1. Contextual distance

As we have argued in the Introduction, a better definition for the
weights should be based on the structure of the data, rather than the
absolute distances among the samples. Inspired by the recent work
on structural perception of data [13,30], we deem that contextual-
distance-based definition of the weights should be good choice. Ac-
cording to [30], contextual distances are defined on the contextual
set X (the set of nearest neighbors) of a sample x. It is related to the
contribution of the samples to the structural integrity of the con-
textual set, which is depicted by a structural descriptor f (could be
either scalar or vector valued). As the descriptor f (X) is supposed
to be the intrinsic structural characterization of the set X, if x com-
plies with the structure of X, then removing x from X will not affect
the structure much. In contrast, if x is an outlier or a noise sample,
then removing x from X will change the structure significantly. The
contribution of x to the structure of X is thus measured by

�f = f (X) − f (X\{x}). (11)

So we may define the distance from x to X as

d(x,X) = ‖�f‖ = ‖f (X) − f (X\{x})‖. (12)

The generalization to the distance between two sets is straight-
forward.

From the above analysis, it becomes natural to define

d(Xi,�si ) = ‖f (�si ) − f (�si\{Xi})‖,

d(�s,�) = ‖f (�) − f (�\�s)‖, (13)

for the weights in (9), using the idea of checking the structural vari-
ation.

3.2. Tensor coding length

To employ the contextual-distance-based weights, we still have
to find an appropriate structural descriptor. In [30], two descriptors
were introduced: centroid and coding length [13,30]. The centroid
descriptor is defined as

f (�) = 1
|�|

∑
x∈�

x,

where |�| denotes the cardinality of �. The coding length descriptor
is f (�) = L(�), where L(�) is the minimal number of bits to encode
the data in �, up to a tolerable distortion � (see Appendix B for the
expression of L(�)).

Unfortunately, neither of the above two existing descriptors is
suitable for TLLD. This is because the centroid descriptor inherently
assumes an Euclidean sample space, while the current formulation
of coding length is vector based. To match the tensor nature of TLLD,
we propose the tensor coding length.

We first mode-k unfold each tensor to a matrix and then compute
the mode-k coding length of the set of columns of these matrices:

L(k)(X) = L({(X1)(k), (X2)(k), . . . , (XN)(k)}), (14)

where X={X1,X2, . . . ,XN} and (Xi)(k) is the mode-k matrix unfolding
of Xi. Then the tensor coding length of X is defined as the following
vector:

L(X) = [L(1)(X), L(2)(X), . . . , L(n)(X)]
T. (15)

Table 2
Metrics we adopt for different features in experiments.

Feature type Metric

Raw facial images Euclidean distance
Locally binary pattern (LBP) features �2 distance
Gabor features Euclidean distance
Features extracted by projections Euclidean distance

To compute the tensor coding length, we empirically choose the

tolerable distortion as: � =
√
10(

∑n
k=1 mk)

n−1/Nn
∏n

k=1 mk.
Now the only issue left is to determine the parameter t in (9).

In LLD, this time parameter is hard to tune in order to achieve the
optimal performance: it may range from 0.01 to 500 in [31] and
from 10−5 to 103 in our experiments (see Section 4). In our TLLD, we
simply rescale t as: t = t′�w for wi and t = t′�b for ws, respectively,
where �w=(1/N)

∑N
i=1 d

2(Xi,�si ) and �b=(1/N)
∑c

s=1 Nsd2(�s,�), and
have found that the optimal t′ is usually around 1. This treatment
easily waives the parameter tuning on t. Note that such a rescaling
trick does not work for LLD. This is because LLD uses the Euclidean
distance, which can have a much larger distance variance than using
the contextual distance (e.g., the neighboring points are in a long-thin
area), while rescaling is effective only when the distance variance is
relatively small.

4. Experimental results

To evaluate our TLLD algorithm, we perform experiments on fa-
cial databases (FRGC version 2 [17] and CMU PIE1 ), texture database
(USC SIPI from the Brodatz album2 ) and handwritten digit database
(MNIST3 ). We compare TLLD with PCA, LDA, LLD, TLDA (DATER
[26]) and tensor LPP [7].4 We also replace the weights of TLLD with
(10) using the assumed metric of the sample space so as to verify the
necessity of using contextual-distance-based weights. This version of
“TLLD” is denoted as TLLD-0. To test on different kinds of data spaces,
we use the raw facial images for face recognition, the locally binary
pattern (LBP) [16] features for texture classification, and the Gabor
features for handwritten digit recognition, as the input data of the
abovementioned methods, respectively. The most commonly used
metrics for these features are listed in Table 2. The nearest-neighbor
classifier is adopted for all the experiments, where the metric used to
compute the distance between the output features of these methods
is dependent on the nature of the features. For example, when his-
togram features are directly used for classification, �2 distance will
be used by the classifier. However, if the histogram features are pro-
jected to low-dimensional spaces by the abovementioned methods
before feeding the classifier, Euclidean distance will be used instead.
All parameters of the involved methods are tuned on the training set,
by the full search over a relatively wide range which is discretized
by some stepsize. In Section 4.3, we also compare the running time
between tensor-based methods and vector-based methods, in which
the difference is the most drastic.

4.1. Face recognition

One of the most natural forms of tensor data are raw images.
In this experiment, two benchmark face databases, experiment 4 in
FRGC version 2 and CMU PIE, are used. For FRGC v2, we search all
images of each person in the query set and take the first 10 images

1 http://www.ri.cmu.edu/projects/project_418.html
2 http://sipi.usc.edu/database/database.cgi?volume = textures
3 http://yann.lecun.com/exdb/mnist/
4 Tensor LPP was designed for matrices only but the data in the second and the

third experiments are both order-3 tensors, so we only test it in the first experiment.

http://www.ri.cmu.edu/projects/project_418.html
http://sipi.usc.edu/database/database.cgi?volume{\mathsurround =2pt\unhbox \voidb@x \hbox {$\mathbin {=}$}}textures
http://yann.lecun.com/exdb/mnist/
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Fig. 3. The results are averaged over six target dimensions and 50 random splits. (a) Sample facial images of one person from FRGC v2. Images are 36 × 32 pixels in size.
(b) Sample facial images of one person from CMU PIE database. Images are 32 × 32 pixels in size.

Table 3
Face recognition results on FRGC v2 and CMU PIE databases.

Database FRGC v2 CMU PIE

Method Err (%) Dim Err (%) Dim

PCA 9.76 70 30.16 135
PCA + LDA 9.05 90 6.58 25
PCA + LLD 8.81 50 (t = 5) 6.58 25 (t = 1000)
TLDA 8.10 20 × 4 4.54 10 × 5
Tensor LPP 7.86 25 × 13 4.54 10 × 5
TLLD-0 7.86 10 × 9 (t = 10−5) 4.31 10 × 5 (t = 10−4)
TLLD 7.38 15 × 4 (t′ = 1) 4.08 10 × 5 (t′ = 1)

Err and Dim denote recognition error rate and reduced feature dimensions, respec-
tively. The time parameters for LLD, TLLD-0 and TLLD are also listed in the brackets.
Dim are the optimal reduced dimensions for the corresponding method.

if the number of facial images is more than 10. Thus we collect
600 facial images of the first 60 subjects for our experiment. All the
images are aligned according to the positions of eyes and mouths,
and then cropped to a size of 36×32 (top row of Fig. 3). The CMU PIE
database contains more than 40,000 facial images of 68 people. The
images were acquired in different poses, under various illumination
conditions and with different facial expressions. In this experiment,
a subset, five near frontal poses (C27, C05, C29, C09 and C07) under
two illumination conditions (indexed as 08 and 11) of 63 people,
is used. So each person has 10 images and in total 630 images are
collected. All the images are aligned by fixing the locations of eyes,
and then normalized to 32 × 32 pixels (bottom row of Fig. 3). We
randomly select three images of each person for the training set and
gallery set and the rest images are used for querying.

Table 3 shows the recognition results.5 One can see tensor
approaches outperform vector-based methods, and TLLD is the best
among them. TLLD is also better than TLLD-0 which assumes Eu-
clidean distance between the facial images. Moreover, one can also
see that the time variable for LLD varies dramatically, while TLLD
does not require careful tuning on t′.

4.2. Texture classification

Another suitable application of TLLD is features based on local
regions. Such features can be organized in tensor structures, with
their spatial information accounting for two dimensions of the ten-
sor. And such features often lie in nonlinear spaces. We choose USC-
SIPI image database as the data for texture classification. The image
data are comprised of 13 textures from the Brodatz album shown in
Fig. 4. For each texture, 512 × 512 images digitized at six different
rotation angles (0◦, 30◦, 60◦, 90◦, 120◦, and 150◦) are included. The
images are divided into 16 disjoint 128 × 128 subimages. So there
are 1248 samples in total, each of the 13 classes having 96 samples.
We randomly select 20 samples in each class as the training set and
the gallery set, while the others are used for testing.

5 In this experiment, LDA and LLD have to work with PCA because otherwise
the within-class scatter matrices will be singular.

In this experiment, we use LBPu28 [16] on a 3 × 3 grid6 (i.e., the
set of LBPu28 's separately computed on the nine evenly partitioned
subimages) as the input of themethods to be tested. So the input data
are order-3 tensors. The results are shown in Table 4. We see that
the vector-based methods perform much worse than tensor-based
methods. This is because texture images are globally homogeneous.
So LBP histograms on different grids are highly correlated, therefore
simple vectorization of such features can result in a highly singular
total-class scatter matrix. Even applying PCA does not help much
because in this case PCA can only extract very little discriminative
information from the complement of the null space of the total-class
scatter matrix. This is the cause of the poor performance of vector-
based methods. Again, one can see that TLLD outperforms all other
methods and its optimal time parameter is still 1.

4.3. Handwritten digit recognition

A third application of TLLD is dimensionality reduction on multi-
resolution images, which are general purpose features for computer
vision and image processing and have been very successful in many
applications. The most popular multi-resolution operator is the
Gabor filter. It has been frequently used in texture analysis [1], face
recognition [26] and digit recognition [25]. We perform experiments
on the MNIST handwritten digit database of 60,000 training sam-
ples and 10,000 testing samples. All images are 28 × 28 grayscale
images. We choose the first 20 images of each digit to compose a
subdatabase Fig. 5. For each class, the first five samples are selected
for training, and the remaining 15 images are used for testing. We
extract 24 Gabor features in four different scales and six different
directions as did in [14] and down-sample them to 7 × 7 images.
Then we get order-3 tensor features of size 24 × 7 × 7.

To our best knowledge, we are unaware of any research
reporting what the optimal metric for Gabor features is. So we have
to assume Euclidean distance between the original order-3 Gabor
feature tensors, so that baseline can be computed and LLD and
TLLD-0 can be applied. The results are shown in Table 5. Almost the
same conclusions from face recognition and texture classification
can be drawn. And TLLD again shows its advantage of metric inde-
pendence: TLLD performs better than TLLD-0 which blindly assumes
Euclidean distances.

We also present the training time of tensor-based methods and
their vector-based counterparts in Table 6. One can see that TLDA,
TLLD-0 and TLLD are much faster than LDA and LLD. This testifies to
the speed advantage of tensor-based methods.

6 In the original paper by Ojala et al. [16], the images are not partitioned. We
partition the images just for constructing tensor input data. Note that the purpose of
experiments in this paper is to test the discriminative power of different methods,
rather than proposing better features for specific tasks, it is harmless to do so.
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Bark 0°

Leather 120°

Straw 60°

Wool 0°

Brick 30° Bubble 60° Grass 90°

Pigskin 150° Raffia 0° Sand 30°

Water 90° Weave 120° Wood 150°

Fig. 4. Texture images in particular rotation angles. Each texture was digitized at six angles: 0◦ , 30◦ , 60◦ , 90◦ , 120◦ , and 150◦ . Images are 512 × 512 pixels in size.

Table 4
Comparison of texture classification error rates.

Method Err (%) Dim

Baseline 19.54 531 (59 × 3 × 3)
PCA 17.51 10
LDA 25.40 15
PCA + LDA 13.97 150
LLD (t = 5 × 10−5) 23.58 57
PCA + LLD (t = 500) 14.27 190
TLDA 3.24 57 × 1 × 1
TLLD-0 (t = 5 × 10−6) 1.92 30 × 1 × 1
TLLD (t′ = 1) 1.62 53 × 1 × 1

Using the original 3× 3 grid LBPu2
8 directly without dimensionality reduction is the

baseline. Dim are the optimal reduced dimensions for the corresponding method.

Fig. 5. Samples of handwritten digits from MNIST database. Images are 28 × 28
pixels in size. (a) Samples from the training set. (b) Samples from the testing set.

5. Conclusions

In this paper, a novel algorithm named TLLD is proposed for
extracting discriminative features from tensor data. Contextual-
distance-based weighting mechanism enables TLLD to work effec-
tively without assuming an a priori metric for the tensor space.
Experiments on different tasks have proven the superiority of TLLD,

Table 5
Recognition results of handwritten digits.

Method Err (%) Dim

Baseline 22.67 1176 (24 × 7 × 7)
PCA 22.67 35
LDA 26.67 20
PCA + LDA 17.33 25
LLD (t = 10−2) 25.33 20
PCA + LLD (t = 1) 16.67 15
TLDA 17.33 6 × 4 × 7
TLLD-0 (t = 10−1) 17.33 6 × 4 × 7
TLLD (t′ = 1) 16.00 12 × 2 × 2

Using the Gabor features directly without dimensionality reduction is the baseline.
Dim are the optimal reduced dimensions for the corresponding method.

Table 6
The training time of vector-based methods and tensor-based methods on MNIST
database.

Method Vector-based Tensor-based

LDA LLD TLDA TLLD-0 TLLD

Time (s) 10.35 10.28 0.354 0.317 0.336

The time is averaged on all possible choice of target dimensions.

including higher discriminative power, metric independence, and
easy parameter tuning.

As the features extracted by TLLD are also tensors, we expect that
the recognition results could be further improved if TLLD cooperates
with tensor-oriented classifiers. And it is possible that some con-
textual distances other than the tensor coding length can result in
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even better performance of TLLD. It is attractive to explore in both
directions.
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Appendix A. The relationship between LDA and LLD

In this appendix, we show that LDA and LLD have the same null
space of the within-class scatter matrices and the same number of
available projection directions.

In LLD, two scatter matrices, called within-class and between-
class scatter matrices, can be written as follows:

Dw = HwWwHT
w and Db = HbWbH

T
b , (A.1)

where Ww = diag(w1,w2, . . . ,wN), Wb = diag(ws1 ,ws2 , . . . ,wsN ), Hw is
the data matrix and Hb is the class mean matrix. The class means
and the global mean of the data have been subtracted from the Hw

and Hb matrices, respectively [31]. In LDA, the two scatter matrices
can be written as

Sw = HwHT
w, Sb = HbH

T
b . (A.2)

Perform singular value decomposition on Hw:

Hw = P	QT, (A.3)

where PTP = PPT = I and QTQ = QQT = I. So we have PTSwP = 		T

and PTDwP = 	QTWwQ	T. Note that Ww, P and Q are full-rank ma-
trices (wi >0). So rank(Dw) = rank(PTDwP) = rank(	QTWwQ	T) =
rank(W1/2

w Q	T	QTW1/2
w ) = rank(	T	) = rank(		T) = rank(PTSwP) =

rank(Sw). Meanwhile, for any right eigenvector p of Sw associated
with the zero eigenvalue, p is also a right eigenvector of HT

w with the
zero eigenvalue. Thus Dwp = HwWwHT

wp = 0, i.e., p is a right eigen-
vector of Dw with the zero eigenvalue. So the within-class scatter
matrix of LLD have the same null space as that of LDA.

Similarly, rank(Sb)= rank(Db). As the number of available projec-
tion directions is dependent on the ranks of the within-class and the
between-class scatter matrices, LLD and LDA have the same number
of available projection directions.

From the above analysis, we can conclude that LLD cannot avoid
the drawbacks of most vector-based subspace learning algorithms,
such as singularity, curse of dimensionality and limit of available
projection directions.

Appendix B. Coding length

Coding length was introduced by Ma et al. [13] to computer
vision and pattern recognition. It is defined on vector sets. For a
vector set X={x1, x2, . . . , xK}, we center each point as x̃i=xi−x, where
x=(1/K)

∑K
i=1xi, and denote X̃= [̃x1, x̃2, . . . , x̃K ]. Then the coding length

of X is

L(X) = K + m
2

log2 det
(
I + m

�2K
X̃X̃T

)
+ m

2
log2

(
1 + xTx

�2

)
, (B.1)

where � is the allowable distortion, which could be empirically cho-
sen as � =

√
10m/(K − 1), and m is the dimension of vectors.
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