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ABSTRACT
Many state-of-the-art object retrieval algorithms aggregate acti-
vations of convolutional neural networks into a holistic compact
feature, and utilize global similarity for an efficient nearest neigh-
bor search. However, holistic features are often insufficient for
representing small objects of interest in gallery images, and global
similarity drops most of the spatial relations in the images. In this
paper, we propose an end-to-end local similarity learning frame-
work to tackle these problems. By applying a correlation layer to
the locally aggregated features, we compute a local similarity that
can not only handle small objects, but also capture spatial relations
between the query and gallery images. We further reduce the mem-
ory and storage footprints of our framework by quantizing local
features. Our model can be trained using only synthetic data, and
achieve competitive performance. Extensive experiments on chal-
lenging benchmarks demonstrate that our local similarity learning
framework outperforms previous global similarity based methods.
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1 INTRODUCTION
Object retrieval has been a fundamental and popular research topic
in computer vision. It aims at retrieving images containing objects
same as the query image from a large database. Classical methods
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Figure 1: Illustration of spatial relations encoded in the cor-
relation volume. In (a), we showhow the spatial relations are
encoded in the correlation volume using a toy example. The
query contains 9 local regions (i.e.,A,B, ...I ). For each local re-
gion, it has a best-matching region in the gallery (indicated
by the same character) which gives themaximum activation
along the depth channel. In the green rectangle, we show
a positive gallery which is an affine transformation of the
query. Since affine transformation is linear, we can see the
coordinates of all the maximum activations fall on a plane.
In the red rectangle, we show a gallery imagewhich contains
the same local regions as the query butwith different spatial
relations, and we see the coordinates of the maximum acti-
vations distribute randomly. In (b), we show a real example
with the query and the gallery pooled to 7 × 7 and 15 × 15
respectively. ResNet101 is used as the feature extractor and
only the strongest 20% activations are shown. We observe
that the coordinates of most activations fall on a plane in
the positive correlation volume while activations randomly
distribute in the negative case. See section 3.2 for further ex-
planation. (Best viewed on screen.)

often represent each image by one or more descriptors, and formu-
late object retrieval as a nearest neighbor search in the descriptor
space [2, 6, 7, 16, 22, 25–28, 41]. Recently, deep convolutional fea-
tures have been extensively explored for image representation,
and they have shown excellent performance over conventional
features in many vision tasks. Many efforts have therefore been
devoted to designing and learning good holistic image represen-
tations based on deep convolutional features, and object retrieval
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can be accomplished by computing global similarities from these
representations [4, 5, 10, 11, 18, 32–35, 42, 45].

Despite its success on standard benchmarks [28, 30], object re-
trieval based on global similarities computed from deep convo-
lutional features has a number of limitations. First, it often has
difficulty in retrieving gallery images with small objects of interest
and cluttered background. Second, it may produce false positives
which do not preserve the structures of the query objects. These
problems originate from the averaging of the aggregated features
of local regions in computing the global descriptor of an image. For
the first problem, the global descriptor of the image is likely to be
dominated by features of the background. For the second problem,
the averaging process discards the spatial relations of local regions
in both the query and the gallery images. To solve the first prob-
lem, Razavian et al. proposed R-match [33] which first performs a
winner-take-all region cross-matching and then accumulates the
maximum similarity of each query region. However, their method
does not take the spatial relations of local regions into account,
resulting in performance degradation. Later, Gordo et al. [10, 11]
attempted to overcome some of the limitations by replacing a fixed
grid of local regions with object proposals [36], but the performance
of their method depends heavily on the trained region proposal
network which may overfit to the object classes in the training
set. Recently, Noh et al. [23] proposed to select a fixed number
of deep local features using an attention mechanism, perform an
approximate nearest neighbor search for each local descriptor in
the gallery feature set, and aggregate all the matches per gallery im-
age. However, their image-level similarity is not defined explicitly
and therefore cannot be learned end-to-end to achieve an optimal
retrieval performance.

In this paper, we propose a simple and effective end-to-end local
similarity learning network for object retrieval. Similar to many
state-of-the-art methods, we generate aggregated features of local
regions for both the query and the gallery images. Instead of com-
bining these aggregated features into a global descriptor through
averaging, we introduce a correlation layer (first used in stereo
matching and optical flow estimation [8, 20]) to compute a correla-
tion volume describing the similarities between local regions of the
query and gallery images. In particular, we show that by preserving
the spatial relations of local regions in both the query and gallery
images, maximum responses in this correlation volume should lie
in a specific subspace which can be used to infer the existence and
location of the object of interest. We propose using a small convo-
lutional network to learn the existence and location of the object of
interest from such a correlation volume. Our local similarity learn-
ing network is composed of two subnetworks, namely a feature
extraction subnetwork for generating local regional features and
an object localization subnetwork for predicting the existence and
location of the object of interest. Since all operations are differ-
entiable, our local similarity network can be trained end-to-end.
To reduce data annotation effort, we deploy a simple approach to
synthesize training data by cutting and pasting object instances on
random backgrounds as in [9]. To scale up our retrieval algorithm,
we further use product quantization [17] to reduce our memory
and storage footprints, and prefiltering with global descriptors to
accelerate the search process on large-scale databases. Our main
contributions are summarized as follows:

(1) We introduce a correlation layer to compute a correlation
volume describing the similarities between local regions of
the query and gallery images, and show that consistency
between the spatial relations of local regions in the query
and gallery images is reflected by maximum responses in
this volume lying on a specific subspace (see Fig. 1 ).

(2) We propose an end-to-end trainable local similarity network
that can capture the spatial relations of local regions for
object retrieval.

(3) We deploy cutting-and-pasting synthesis method [9] to train
the proposed network and achieve competitive performance
on standard benchmarks. To our best knowledge, this is
the first study of training an object retrieval model with
synthetic data only.

(4) Our algorithm outperforms other methods on Oxford [29],
Paris [30] and Instre [44] datasets, especially for cases of pos-
itive gallery images with cluttered background and negative
gallery images with similar local regions but different spatial
relations.

2 RELATEDWORKS
Object retrieval has been studied for more than a decade. A com-
prehensive survey, which categorizes existing methods into local
feature based methods and global feature based methods, can be
found in [48]. In [41], Sivic and Zisserman proposed the Bag-of-the-
Word (BoW) model which encodes a set of local invariant features
(e.g., SIFT [21]) in a sparse feature vector for image retrieval. Follow-
ing this seminal work, researchers introduced various components,
such as large visual codebooks [3, 22], spatial verification [25, 28]
and query expansion [6, 7], into the pipeline to improve the re-
trieval performance. Other classical research works, such as Fisher
Vector [26, 27] and VLAD [2, 16], focused on designing schemes
for aggregating local features into compact global features.

In the past few years, convolutional neural networks (CNNs)
were widely adopted for the object retrieval task, and they demon-
strated extraordinary performance. Many of such works [4, 5, 10,
11, 18, 31–35, 42, 45] focused on designing and learning holistic
compact features. Early works [4, 33] extracted features directly
from the fully connected layers of a pre-trained CNN, while recent
works commonly aggregated regional features from the convolu-
tional layers [1, 42, 45]. Researchers also found that fine-tuning
CNNs on data similar to the target task can significantly boost
the retrieval performance [4, 10, 11, 32]. These methods typically
adopted a nearest neighbor search based on global similarities of
the holistic compact features. Although searching based on global
similarity is efficient, it does not perform well under more chal-
lenging conditions, such as complicated clutter, large occlusion
and variations in viewpoints. This is because global similarity is
ineffective in representing similarities between local regions as it
drops the spatial relations of local regions in the images.

In [23], Noh et al. proposed a deep local feature image retrieval
method which utilizes an attention mechanism to extract local fea-
tures from a query image and performs nearest neighbor search for
each local feature. Their method then aggregates all the matches
per gallery image. Iscen et al. [15] proposed a diffusion mechanism
to capture the manifold in the local feature space. The diffusion



is carried out on descriptors of overlapping image regions rather
than on a holistic image descriptor. The use of local features has
boosted the retrieval performance significantly in these approaches.
However, their local feature based similarities are not defined ex-
plicitly, and their pipelines are rather complicated. For instance,
the regional diffusion method [15] requires storing and computing
on a huge graph. In contrast, we propose a simple and effective
end-to-end local similarity learning network for object retrieval.

CNNs have also demonstrated great success in image matching.
Many research works [12, 43, 46, 47] focused on part of or the whole
pipeline for detecting local feature keypoints and comparing local
features. Recently, Rocco et al. [37] proposed a CNN architecture
trained on synthetically generated images for predicting an affine or
thin-plate-spline transformation for image matching. However, all
these methods were not originally designed for the object retrieval
task. In this paper, we cast the problem of object retrieval as object
localization (i.e., checking whether the query object exists in the
gallery image and finding its position), and supervise our proposed
end-to-end trainable network with an object localization loss. We
also demonstrate how our object retrieval algorithm can be scaled
up to handle large-scale datasets.

3 LOCAL SIMILARITY WITH SPATIAL
RELATIONS

In this section, we first briefly describe the working principle of ex-
isting methods that are based on global similarity, and the problems
associated with them. This leads us to explore taking the spatial
relations of local regions into account in computing local similarity
for object retrieval. Specifically, we propose to compute similarities
between local regions of the query and gallery images using cor-
relation, and rearrange the results into a correlation volume that
allows easy indexing the similarities by spatial indices of the local
regions. We prove that by preserving the spatial relations of local
regions in both the query and gallery images, maximum responses
in this correlation volume should lie in a specific subspace. Based
on this proof, we propose using a small CNN to learn the existence
and location of the object of interest from the correlation volume.

3.1 Deficiency of Global Similarity
Many recent CNN-based object retrieval algorithms follow the
global R-MAC pipeline [42] which subdivides an image into a grid
of rectangular regions, extracts local features from the regions, and
aggregates these regional features to a holistic image representa-
tion [10, 11, 14, 18, 32? ]. The R-MAC extraction process can be
summarized as follows. First, activation features are extracted from
the convolutional layers of a pre-trained network. These activation
features are then max-pooled in each region. The pooled regional
features are independently ł2-normalized, whitened with PCA and
ł2-normalized again. Finally, these normalized regional features are
sum-aggregated and ł2-normalized to produce a holistic descriptor.
A global similarity between two images can then be computed as
the dot-product of their holistic descriptors.

Let fq (xq ) ∈ RD denote the normalized D-dimensional regional
feature with spatial index xq ∈ R2 for the query image. Similarly,
let fд(xд) ∈ RD denote the normalized regional feature with spatial
index xд ∈ R2 for the gallery image. The global R-MAC descriptors

for the query and gallery images can be written as gq =
∑
xq fq (xq )

and gд =
∑
xд fд(xд)

1 respectively. The global similarity between
the query and gallery images is then given by

SR−MAC = gTдgq =
∑

xд ,xq

fд (xд )Tfq (xq ). (1)

It follows from (1) that the global R-MAC similarity can be in-
terpreted as a cross matching between all regions of the query
and gallery images. This formulation has two potential problems.
First, each pair of regions contributes equally to the final similar-
ity, and this makes the contributions of the true corresponding
regions less significant (i.e., a low signal-to-noise ratio). Second, the
sum-aggregation is an orderless operation over the set of regional
features, and is incapable of preserving the spatial relations of local
regions in the image. The seminal work R-Match [34] solves the
first problem by adopting a winner-take-all approach. It greedily
finds the best matched local region in the gallery image for each
local region in the query image, and then sum-aggregates the simi-
larities of the best matches into the final similarity. Formally, the
R-Match similarity is given by

SR−Match =
∑
xq

max
xд

(
fд (xд )Tfq (xq )

)
. (2)

Note that R-Match does not take the spatial relations of local regions
into account in computing the local similarity. It would therefore
output an incorrect high similarity when the gallery image contains
local regions which are similar to those of the query image but have
a different spatial composition (see the shuffle case in Fig. 1a).

3.2 Preserving Spatial Relations of Local
Regions

In order to allow us to take the spatial relations of local regions into
account in computing local similarity, we propose to compute simi-
larities between local regions of the query and gallery images using
correlation, and rearrange the results into a correlation volume that
indices the similarities by spatial locations. Let fq ∈ RWq×Hq×D

denote a 2D map of D-dimensional regional features for the query
image, whereWq × Hq is the spatial resolution of the subdivision
grid for the query image. Similarly, let fд ∈ RWд×Hд×D denote a
2D map of D-dimensional regional features for the gallery image,
whereWд ×Hд is the spatial resolution of the subdivision grid for
the gallery image. We define the similarity between the local region
of the query image with spatial index (wq ,hq ) and the local region
of the gallery image with spatial index (wд ,hд) as

s(wд, hд, wq, hq ) = fд (wд, hд )Tfq (wq, hq ). (3)

By considering the similarities between all regions of the query and
gallery images, we produce a tensor of similarities with a dimension
ofWд ×Hд ×Wq ×Hq . We rearrange the last two dimensions related
to the query image into a single dimension referred to as the depth
channel, and obtain a volume of similarities with a dimension of
Wд ×Hд × D ′ where D ′ =Wq ×Hq . We can interpret this volume
as a 2D map (i.e.,Wд × Hд ) of D ′-dimensional correlation vectors
fc (wд ,hд), where each correlation vector fc (wд ,hд) encodes how

1The normalization scales are omitted in the expressions of gq and gд for the sake of
simplicity.



well the local region of the gallery image with spatial index (wд ,hд)
matches with each local region of the query image.

The above computation can be conveniently implemented with a
correlation layer which is first used in CNN-based stereo matching
and optical flow estimation [8, 20]. Note that the correlation volume
generated by the correlation layer stores the similarities in such a
way that allows easy indexing the similarities by spatial indices of
the local regions. Next, we are going to show that by preserving
the spatial relations of local regions in both the query and gallery
images, maximum responses in this correlation volume should lie in
a specific subspace. Consider the simple case where the query and
the gallery images are identical. Let d ′ ∈ [1,Wq ×Hq ] denote the in-
dex of the maximum response for the correlation vector fc (wд ,hд).
Since the query and gallery images are identical, maximum response
should happen when the local regions of the query and gallery im-
ages have the same spatial index (i.e., (wq ,hq ) = (wд ,hд)). Hence,
we have

d ′ = K[wq hq ]T −Wq, (4)

where K = [1 Wq ]. Now consider the case where there exists a
transformation between the query and gallery images. Let Φ be
a function that maps each local region of the gallery image to a
corresponding local region of the query image, i.e.,

[wq hq ]T = Φ[wд hд ]T . (5)

Substituting (5) into 4 gives

d ′ = KΦ([wд hд ]T) −Wq, (6)

which defines the subspace in which the maximum responses cor-
responding to true matching of local regions between the query
and gallery images should lie. It is easy to see that if the mapping
function Φ is linear (e.g., translation, rotation, scaling, affine trans-
formation), this subspace will become a plane. We illustrate the
existence of such a subspace for maximum responses in Fig. 1 us-
ing both toy and real examples. It can be observed that maximum
responses lie on a plane for positive gallery images, whereas there
is a more ‘random’ distribution of maximum responses for negative
gallery images.

3.3 Learning Local Similarity with Object
Localization

From the analysis above, we find that the correlation volume fc not
only encodes the pairwise similarity between all the local region
pairs, but also captures the spatial relations. Since our goal is to
estimate the similarity between the query and the gallery image,
we design a lightweight CNN F to classify the pattern encoded
in the correlation volume. The predicted confidence for a positive
pair is used as the estimated similarity between the query and the
gallery. Formally,

Slocal = F(fc ). (7)

As the correlation volume encodes information of whether the
query exists in the gallery as well as the location(s) of the query,
we model the retrieval problem as object localization on the corre-
lation volume. Following the spirit of Faster R-CNN [36], we apply
classification and localization in parallel. Formally, during training,
we define a multi-task loss as

L(y, y, l, l ) = Lcls (y, y) + λLloc (l, l ), (8)

Table 1: Comparing the performance of different loss func-
tions. Models are trained with ResNet-101 as backbone on
synthetic data. Ltrp , Lcls and Lloc denote the classification
loss, triplet loss and localization loss, respectively.

Oxf5k Par6k
Ltrp 78.2 87.6
Lcls 80.3 88.9
Lcls + Lloc 81.1 89.3

where y is the probability of object existence predicted by the
convolutional subnetwork, y is the ground truth label of object
existence (y = 1 if the query object exists in the gallery image, and
y = 0 otherwise), l and l denote the predicted and ground truth
normalized bounding boxes of the query object in the gallery image,
respectively. λ is simply a balancing weight which is set to 0.05 in
our implementation.

The classification loss Lcls (y,y) is computed based on cross
entropy loss. We use the classification loss rather than the triplet
loss that is used in [10, 11], because the objective of the proposed
CNN F is to classify the correlation volume, not to differentiate
between the features from two images.

The localization loss Lloc (l , l) is computed as smooth l1 loss as
defined in [36], with two major differences. First, the localization
loss is normalized by the number of positive query gallery pairs in a
mini-batch, i.e., Nloc =

∑N
i=1 yi where N is the size of a mini-batch,

but not the number of positive region proposals as in [36]. Second,
the bounding box is encoded and normalized with the height and
width of the input image as the reference rectangle but not region
proposals or default boxes as in [36]. We emphasize that our task
is object retrieval but not object detection. We assume there is at
most one query object in one gallery image during training. This
is actually true for our training data. For testing, we have no such
limitation.

After training, the probability of object existence predicted by
the CNN F can be used directly as the similarity between the
query and gallery images. Since the correlation layer encodes the
matching between local regions, we name our similarity as local
similarity, in contrast to global similarity which compares holistic
image representations.

To demonstrate the effectiveness of the proposed loss, we com-
pare the performance of models trained with different loss functions
in Table 1. We can see that the classification loss outperforms the
triplet loss, and the localization loss further improves the perfor-
mance since it utilizes additional information for supervision.

By making use of the above multi-task loss, we find that the CNN
F can learn to mine the spatial relation consistency. To apprehend
its capability, we apply Grad-CAM [39] to visualize the convolu-
tional feature maps. Fig. 2 illustrates that the CNN F gradually
focuses on the region with spatial relation consistency and discards
those without it.

3.4 Local Similarity Learning CNN
Our local similarity learning CNN consists of two major compo-
nents, namely a feature extraction subnetwork and an object lo-
calization subnetwork. Fig. 3 shows the overall architecture of the
proposed framework.
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Figure 2: Visualizing the capability of mining spatial rela-
tion consistency. Top and bottom are the query and gallery
images. (a) and (b) use the same gallery image but differ-
ent query objects. Grad-CAM1, Grad-CAM2 and GradCAM3
show activations of the 1st, 2nd and 4th convolutional layer
feature maps, respectively. (Best viewed on screen.)

Feature extraction subnetwork. Theoretically, any kind of
architectures can be used as the backbone for our feature extraction
subnetwork. For simplicity, we take ResNet-101 as the backbone for
analysis here. To extract better representations for small objects,
we do not resize the input image2 before feeding it into the feature
extraction subnetwork. Hence, our feature extraction subnetwork
produces feature maps of different sizes depending on the input
image sizes. To handle the differences in size of the feature maps,
on the last convolution of ResNet-101, we use one ROI-pooling
layer (with ROI being the whole image) to pool the feature map of
the gallery image to a fixed size of 15 × 15 × 2014, and that of the
query image to 7× 7× 2014. Note that the feature map of the query
image has a smaller size than that of the gallery image. Such a
design is based on the fact that the (cropped) query image typically
contains only the object of interest, whereas the object of interest
often occupies only a small region of the gallery image. A small
query feature map results in a smaller number of depth channels in
the correlation volume and hence a faster similarity computation.
We further l2-normalize the pooled feature maps at each location to
avoid magnitude unbalance between the query and gallery feature
maps before feeding them into the object localization subnetwork.

Object localization subnetwork. With a correlation layer tak-
ing the query and gallery feature maps as input, our object localiza-
tion subnetwork utilizes a lightweight CNN to predict whether the
query exists in the gallery image with a localization auxiliary task.
It has only 5 convolutional layers with a small number of channels,
and two small fully connected layers. Each convolutional layer is
followed by an instance normalization layer and a ReLU layer. The
detailed configuration of the object localization subnetwork can be
see in Table 2.

Our object localization subnetwork is lightweight. The total run-
time for retrieving a query is the sum of the runtime for extracting
query features and the runtime for predicting similarity. The run-
time of our feature extraction subnetwork is similar to that of the
global feature extractor [11], both taking about 0.09s on average
for an image of size 1024 × 768 (typical size for images in Oxford
building and Paris datasets) using GPU (e.g., Titan X). Our object
location subnetwork can make a prediction in less than 0.07ms ,
achieving about 16,000 frames per second, which is less than 0.1%
of the runtime for feature extraction.

2Query images are first cropped with the given bounding boxes. During training, for
ease of implementation, all gallery images in a mini-batch are resized to their average
size, with a maximum size of 800, and the same for query images in a mini-batch.
During testing, we keep the original sizes of the gallery images.

Gallery	"#

Query	"$

CNN

Local	subbranch

Global	subbranch Encoding

CNN

Global	subbranch Encoding

Quantizer
Correlation CNN

Local	
similarity	

Cosine
Global	
similarity	

Local	subbranch

Combination
Final	
similarity	

Feature	extraction	subnetwork Object	localization	subnetwork

Figure 3: Architecture of the proposed local similarity learn-
ing framework. The proposed feature extraction subnet-
work and object localization subnetwork are shown in the
dashed boxes.

Table 2: Detailed configuration of the proposed object local-
ization subnetwork.

Type Filter Shape Input Size
Conv Block [3 × 3, 128]×3 15×15×49
Max Pool Pool 2×2 15×15×128
Conv Block [3×3, 64]×2 7×7×128
Max Pool Pool 2×2 7×7×128

FC 576×2 3×3×64576×4

3.5 Scaling Up for Efficient Object Retrieval
Scalable storage. We pre-compute and store the outputs of the
feature extraction subnetwork for the gallery images for saving
time and computational resource. Given a gallery image, its feature
map has a dimension ofWd ×Hd ×D (where D denotes the number
of channels). For a large gallery set, it would mean a high memory
and storage cost. In order to reduce the memory and storage foot-
prints, each D-dimensional feature vector is first subdivided into
M sub-vectors and then k-means clustering is run on the uncom-
pressed sub-vectors to generate C centers for each subpart. Finally,
each subvector is approximated by one of theC centers. In this way,
each feature vector can be approximated using onlyM ∗loд2(C) bits.
Typically, C is set to 256, andM is set to 128 in our case. The total
storage can therefore be reduced by 64 times. Experimental results
show that, after quantization, the retrieval performance decreases
only by 1.2% and 0.5%, respectively on Oxf5k [28] and Par6k [30]
benchmarks. It suggests that the proposed object localization sub-
network is robust against small perturbation of the input, and has
a good generalization ability. Fine-tuning the object localization
subnetwork after quantization can further improve its performance
consistently. A fine-tuned subnetwork withM = 128 ( i.e., 64 times
compression) has negligible drops (0.9% on Oxf5k and 0.2% on
Par6k) on performance as its uncompressed counterpart on both
benchmarks. More detailed results can be found in Section 4.4.

Scalable search. For large-scale databases, we extract a global
feature on top of the convolutional layer to accelerate the whole
retrieval process. Specifically, we first use the global feature to filter
out most irrelevant images, and get a short list of K gallery images.
The proposed local similarity is then computed only between the
query and the shortlisted images. Theoretically, any global feature
can be used to accelerate the search process. To harvest the power



Figure 4: Examples of the synthetic data. Black/red/yellow
borders on images denote original images, masks provided
and synthetic samples generated respectively. Regions of in-
terest are bordered with green color for visualization (Best
viewed on screen).

of deep features and reduce computational cost, we extract the pop-
ular and effective R-MAC [42] features. Directly encoding R-MAC
on activations of the last convolutional layer of ResNet-101 resulted
in poor performance of the local similarity learning task. This is
reasonable since global similarity and local similarity need different
semantic representation. We gradually reduce the shared layers
between R-MAC and the proposed feature extraction subnetwork,
and experimentally find that sharing the first 91 layers can achieve
a good trade-off between effectiveness and efficiency. Therefore, in
our final design, R-MAC and the proposed feature extraction sub-
network each has one separated small branch of 10 convolutional
layers (92 ∼ 101 layers in ResNet-101). When testing on a GPU (e.g.,
Titan X), the separated 10 convolutional layers add about 0.004s
for the total feature extraction and take up 5% of the total feature
extraction time. Although the global feature R-MAC is introduced
here for efficient search initially, we find that the performance of
the proposed method can be boosted further by combining local
similarity with the global similarity based on R-MAC.

3.6 Training with Synthetic Data.
Previous research [10, 11, 32] proposed to collect a large real dataset
from the web and label training images with sophisticated methods
for image retrieval. Inspired by recent cutting-and-pasting approach
for instance detection [9], we generated a large set of training
images with bounding boxes annotations in a simpler and more
scalable way. The procedure for generating synthetic data can be
summarized as follows.

Cutting. To cut objects from images, we first need the instance
masks for the object instances. We use the masks of object instances
provided by the annotations of COCO dataset [19]. We randomly
sample 5,000 images from COCO validation set [19]. For each image,
we automatically remove those instances whose areas are smaller
than 80 × 80 and keep only one instance mask per image, resulting
in about 4,000 objects.

Pasting. We use images from ImageNet dataset [38] as the back-
ground dataset because it provides diverse backgrounds. We paste
the query objects into any random position of the background im-
ages. Data augmentation, including rotation, scale transformation,
photo-metric distortion and random cropping, is carried out before
blending to further increase the diversity of the training dataset.

Samples of the original images, masks and synthetic data can be
seen in Fig 4. During training, we use the whole synthetic images as
gallery images and the cropped regions of interest as query images.

Figure 5: Examples of the synthetic distractors. Black, green
and red borders on images denote example query objects,
positive gallery images and synthetic negative gallery dis-
tractors respectively. Regions of interest in the positive gal-
leries are bordered with yellow color for visualization (Best
viewed on screen).

4 EXPERIMENTS
In this section, we demonstrate the performance of our proposed
object retrieval algorithm with extensive experiments. First, we
show that our pipeline can be trained effectively with only syn-
thetic data and achieve competitive performance. We then show the
effectiveness of local similarity. We also evaluate the techniques of
scalable storage and scalable search. Finally, we compare our object
retrieval algorithm with state-of-the-art methods using global simi-
larity (e.g., DIR [10, 11]) and regional features (e.g., R-Match [34]
and DELF [23]).

4.1 Experimental Settings
Evaluation datasets and criterion. We evaluate our methods
on popular object retrieval datasets, namely Oxford Building [28],
Paris [30] and INSTRE [44]. Oxford building dataset [28] and Paris
[30] dataset, composed of 5, 063 and 6, 412 images, are referred to as
Oxf5k and Par6k, respectively. Besides, 100k Flickr images [28] are
added to these two datasets to form Oxf105k and Par106k datasets
for evaluation at a larger scale. To better show the effectiveness of
the proposed method, we also create new datasets by adding more
challenging synthetic negative distractors into Oxf5k and Par6k.
Specifically, every positive gallery image is first subdivided into a
grid of 10× 10 and then we shuffle these 100 patches randomly. We
finally manually check that the region of interest is fully destroyed.
Fig 5 shows some examples of synthetic distractors, which contain
local patches similar to the query images but with a total different
spatial arrangement. For each positive gallery image, we generate
3 synthetic distractors and combine them with the original Oxf5k
and Par6k to form two new testing sets which contain 6, 764 and
11, 782 images respectively. We refer to these two new datasets as
OxfShf and ParShf respectively. As for INSTRE [44], it contains
250 different objects and include more variations such as scales,
rotations and occlusions than Oxford and Paris, which make it
more challenging. Retrieval performance is measured in terms of
mean average precision (mAP) which is widely used in the image
retrieval community.

Training data. We construct two training datasets, namely Co-
coSyn and Landmark-clean-half. CocoSyn is a synthetic dataset
of 20, 000 images. As described in Section 3.6, we synthesize 4
images for each segmented object instance. Together with the orig-
inal 4, 000 Coco [19] images, we obtain 20, 000 training images.
Landmark-clean-half is a subset of Landmarks-clean dataset cre-
ated by Gordo et al. [10, 11]. The original Landmarks-clean dataset



Table 3: Effectiveness of training with synthetic data. The
proposed local similarity is marked with ⋆. syn and lch in-
dicate CocoSyn dataset and Landmarks-clean-half dataset,
respectively.

(a) With VGG-16 as backbone

Oxf5k Par6k
SiaMac [32] 77.0 84.1
⋆(syn) 75.6 81.2
⋆(syn+lch) 86.4 88.1

(b) With ResNet-101 as backbone

Oxf5k Par6k
DIR-R-MAC [11] 83.9 93.8
⋆(syn) 81.1 89.3
⋆(syn+lch) 90.3 94.4

used for training DIR [10, 11] consists of 49, 000 images with ap-
proximate bounding boxes. However, due to link failure, we are
only able to download a subset of 27, 699 images (23, 843 for train-
ing and 3, 856 for validation), which is about 56.5% of the whole
Landmarks-clean dataset.

Implementation details. We use VGG-16 [40] and ResNet-
101[13] as our backbones. For models trained with synthetic data
only, we use the model pre-trained on ImageNet as a starting point.
For models that share feature extraction subnetwork with DIR-R-
MAC [11], we use their released R-MAC model [11] to initialize
them. We train the networks with stochastic gradient descent, with
a learning rate of 10−3, momentum 0.9, weight decay 10−2 and
batch size of 16. In each batch, we use 8 pairs of images (i.e., 8 query
images and their corresponding positive gallery images) to gener-
ate 8 positive pairs and 56 negative pairs. We select all 8 positive
pairs and 8 most difficult negative pairs for loss calculation. Our
implementation is based on PyTorch [24] library and trained on a
PC with 4 NVIDIA GTX 1080Ti cards.

4.2 Effectiveness of Training with Synthetic
Data

We evaluate the effectiveness of training with synthetic data using
both VGG-16 and ResNet-101 pre-trained on ImageNet as back-
bones. As shown in Table 3, the proposed local similarity trained
on CocoSyn can achieve competitive performance compared with
SiaMac [32] and DIR-R-MAC [11]. Note that SiaMac [32] and DIR-
R-MAC [11]3 are trained on large-scale real datasets (160, 000 and
192, 000 images, respectively, compared to 20, 000 images in Co-
coSyn) which have contents similar to the test images in Oxf5k
and Par6k, and are constructed with sophisticated methods. With
23, 843 additional real images from Landmarks-clean-half, the pro-
posed local similarity outperforms SiaMac and DIR-R-MAC. As the
combination of CocoSyn and Landmarks-clean-half has a size com-
parable to the original Landmarks-clean dataset [11], we conduct
all the rest of our experiments using the combined training dataset
except as otherwise noted.

4.3 Effectiveness of Local Similarity
We use the released R-MAC model [11] to initialize the proposed
feature extraction network. We further fine-tune the last 10 layers
of the feature extraction subnetwork and the whole object localiza-
tion subnetwork. As shown in Table 4, the proposed local similarity

3For ease of comparison with DIR on all the datasets, we test the performance of DIR
with the source code and models released by the authors. It is slightly different from
the performance reported in the paper (84.1 on Oxf5k and 93.6 on Par6k).

Table 4: Comparison of object retrieval performance of
global similarity, local similarity and their combination on
seven datasets. We use ResNet-101 as backbone. Our meth-
ods are marked with ⋆.

Oxf5k Par6k Oxf105k Par106k OxfShf ParShf INSTRE
local⋆ 91.6 95.3 89.5 91.7 91.4 93.3 76.9
global [11] 83.9 93.8 80.8 89.9 74.7 81.5 62.6
local+global⋆ 91.8 95.6 89.8 92.5 91.0 93.1 77.3

consistently outperforms global similarity [11] on all datasets. More-
over, combining local and global similarities with a linear weight
of 0.9 for the local similarity has the best performance. This shows
that our local similarity is complementary to the global similarity.

Robustness to small objectswith cluttered background. To
illustrate the advantage of local similarity, we show some examples
on which our local similarity outperforms global similarity in Fig. 6.
We find that global similarity is good at retrieving gallery images
with relatively large objects and fails to retrieve gallery images
with a small query object and complicated background (e.g., the
images with green borders in Fig. 6). In contrast, our local similarity
is able to find region-level matches between images, which enables
it to successfully retrieve such difficult images. Particularly, for the
INSTRE [44] dataset which contains a lot of small objects, our local
similarity outperforms global similarity by 14.3% (see Table 4).

Capturing Spatial Relations. We also find that global similar-
ity may retrieve false positive gallery images with similar local
patterns but different spatial relations (e.g., the images with red
borders in Fig. 6). In contrast, our local similarity is good at cap-
turing spatial relations of local patterns, which helps to suppress
such false alarms. Particularly, for OxfShf and ParShf which contain
challenging synthetic negative distractors, our local similarity out-
performs global similarity by 16.7% and 11.8% respectively. Local
similarity achieves slightly better performance than local+global
on oxfShf and ParShf. We suspect that the reason is that global
similarity fails to capture the spatial relations and achieves poor
performance on OxfShf and ParShf, which makes the combina-
tion of local+global achieves slightly worse performance. However,
local+global achieves the best performance on most datasets.

4.4 Impact of Scaling Up
Impact of storage compression. In product quantization, we fix
the number of the centers to be 256 and the compression ratio
is determined by the number of subvectors M , which we divide
each D-dimensional local feature into. Table 5 shows the retrieval
performance when M is 32, 64 and 128 respectively. We can see
that fine-tuning the object localization subnetwork can consistently
boost the retrieval performance. The overall performance is good
and stable with varying parameters from 32 to 128. Since the model
with M = 128 to encode the local features has the most stable
performance, we use this value for the rest of our experiments.

Impact of prefiltering with global similarity. We do cross
validation for linear combination weight w from 0 to 1 and the
size K of the short list from 0 to 5,000. The results are shown in
Fig. 7 and 8. We find that the performance is stable for a wide
range of both parameters. The combined similarity is defined as
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Figure 6: Typical examples on which our local similar-
ity outperforms global similarity. Black/red/green borders
on images denote query/negative gallery/positive gallery
images, respectively. Yellow/blue/purple rectangles denote
query images, results of the global similarity [11] and that of
the proposed local similarity respectively. Ranks are shown
below the gallery images. (Best viewed on screen.)
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Figure 8: Cross-validation for
the size of the short list K .

S = (1−w)×Sдlobal +w ×Slocal , where Sдlobal and Slocal are the
global similarity and local similarity, respectively. We setw = 0.9
and K = 5, 000.

4.5 Comparison with State-of-the-Art Methods
We compare our algorithm with state-of-the-art methods includ-
ing global similarity based method such as DIR [10, 11] and local
similarity based methods such as R-Match [34] and DELF [23] on
Oxford, Paris and INSTRE datasets. All of the implementations of

Table 5: Comparing the performance of using different num-
bers of subvectors for compressing local features. ∗ denotes
the results after fine-tuning the object localization network
with quantization. Full denotes the results without any
memory and storage compression. CR denotes the compres-
sion ratio.

M 32 32* 64 64* 128 128* Full
CR 256 256 128 128 64 64 -
Oxf5k 84.9 87.3 88.1 89.0 90.4 90.7 91.6
Par6k 93.2 94.2 94.3 94.8 94.8 95.1 95.3

the compared methods, except DELF [23] and siaMAC [32], use the
ResNet-101 model released by Gordo et al. [11] and a single scale
as input. All implementations are carefully reproduced using the
public source code released by the original authors. As shown in the
first part of Table 6, our method trained with only the Landmark-
clean-half outperforms all the other methods (compared without
any post-processing). It can achieve a further gain when training
with both synthetic data and real data. Again, with query expansion,
our method performs best on all the datasets.

Table 6: Comparison with state-of-the-art methods. Our
methods are marked with ⋆. lch denotes the model trained
with Landmarks-clean-half only. lch+syn denotes themodel
trained with both Landmarks-clean-half and CocoSyn. QE
denotes query expansion.

Oxf5k Par5k Oxf105k Par106k OxfShf ParShf Ins
Without post-processing
siaMAC [32] 77.7 84.1 70.1 76.8 - - -
DIR-RMAC [11] 83.9 93.8 80.8 89.9 74.7 81.5 62.6
R-Match [11, 34] 88.1 94.9 85.7 91.3 83.5 86.9 71.0
DELF [23] 83.8 85.0 82.6 81.7 83.9 84.2 -
⋆(lch) 90.5 95.7 88.6 92.5 90.4 93.3 71.1
⋆(syn-lch) 90.8 95.7 88.9 93.0 90.5 92.7 76.5
With query expansion
siaMAC+QE [32] 82.9 85.6 77.9 78.3 - - -
DIR-RMAC+QE [11] 89.6 95.3 88.3 92.7 75.2 82.1 70.5
R-Match+QE [11, 34] 91.0 95.5 89.6 92.5 84.9 86.8 77.1
DELF+DIR+QE [11, 23] 90.0 95.7 88.5 92.8 84.4 84.6 -
⋆+QE(lch) 91.5 95.8 90.0 92.8 90.9 92.4 75.2
⋆+QE(syn-lch) 91.9 95.8 90.4 93.3 91.3 91.7 78.2

5 CONCLUSIONS
We proposed an end-to-end trainable CNN for local similarity learn-
ing by modeling the problem of object retrieval as object localiza-
tion. Our CNN consists of a feature extraction subnetwork and an
object localization subnetwork. Correlation layer is used to capture
the spatial relations in images. We found that the correlation vol-
ume encodes whether the spatial relations of the gallery and those
of the query are consistent or not. Thanks to the spatial relation
harvesting, the proposed local similarity has excellent retrieval
performance, and is complementary to global similarity. Besides,
we proposed a scalable retrieval algorithm, by utilizing product
quantization to compress gallery features, and global similarity
to prefilter the gallery images and enhance the search results. Ex-
tensive experiments on challenging benchmarks demonstrate the
effectiveness of the proposed algorithm.
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