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Abstract

Deep CNNs have achieved great success in text detection. Most of existing methods
attempt to improve accuracy with sophisticated network design, while paying less atten-
tion on speed. In this paper, we propose a general framework for text detection called
Guided CNN to achieve the two goals simultaneously. The proposed model consists of
one guidance subnetwork, where a guidance mask is learned from the input image itself,
and one primary text detector, where every convolution and non-linear operation are con-
ducted only in the guidance mask. The guidance subnetwork filters out non-text regions
coarsely, greatly reducing the computation complexity. At the same time, the primary
text detector focuses on distinguishing between text and hard non-text regions and re-
gressing text bounding boxes, achieving a better detection accuracy. A novel training
strategy, called background-aware block-wise random synthesis, is proposed to further
boost up the performance. We demonstrate that the proposed Guided CNN is not only
effective but also efficient with two state-of-the-art methods, CTPN [52] and EAST [64],
as backbones. On the challenging benchmark ICDAR 2013, it speeds up CTPN by 2.9
times on average, while improving the F-measure by 1.5%. On ICDAR 2015, it speeds
up EAST by 2.0 times while improving the F-measure by 1.0%.
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Figure 1: Illustration of guiding the primary text detector.
Convolutions and non-linear operations are conducted only in
the guidance mask indicated by the red and blue rectangles.
The guidance mask (the blue) is expanded by background-
aware block-wise random synthesis (the red) during training.
When testing, the guidance mask is not expanded.

Figure 2: Text appears very sparsely in scene im-
ages. The left shows one example image. The right
shows the text area ratio composition of ICDAR
2013 test set. Images with (0%,10%], (10%,20%],
(20%,30%], and (30%,40%] text region account for
57%, 21%, 11%, and 6% respectively. Only 5 %
images have more than 40% text region.
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1 Introduction

Reading text in natural images in the wild has attracted increasing attention recently, as
shown in [3, 7, 10, 11, 13, 22, 27, 36, 37, 39, 40, 52, 55, 57, 64]. Large variance of text
patterns and highly cluttered background pose the main challenge for text detection.

Inspired by recent advances in general object detection and semantic segmentation, such
as Faster R-CNN [44], SSD [35] and FCN [45], recent text detection approaches [3, 7,
11, 12, 13, 14, 21, 22, 27, 36, 37, 52, 64] directly predict the bounding boxes of text, and
improve text detection accuracy considerably. They focus on designing of better network
architecture and objective function while paying less attention to the detection speed, which
hinders deploying CNN-based text detection methods. Although there exist methods [4,
8, 29, 49, 54, 61] to accelerate general CNNs, they often achieve speedup at the cost of
sacrificing accuracy, and are not tailored for text detection.

Text appears very sparsely in natural scene images, as shown in Figure 2. Our statis-
tics on ICDAR 2013 test set show that only 9.7% of the whole region has text, and the rest
is background. Except for those background regions nearby texts, background regions are
useless for text detection and text recognition, as discussed in [11, 12], and thus are un-
necessarily processed in text detectors. Filtering out them could potentially speed up text
detectors. However, filtering out background without sacrificing accuracy itself is not trivial.
First, this filtering operation should be fast with very little computation overhead. Second,
we need to achieve high recall of text regions after filtering as the text filtered out cannot be
detected.

To this end, in this paper, we make full use of the characteristic of sparseness of text in the
wild, and propose a simple yet effective general framework for text detection, called Guided
CNN, to speed up text detectors and improve their accuracy simultaneously. It mimics the
procedure of the human visual system: first glancing at the full image and then focusing on
salient regions. Specifically, it consists of two subnetworks: one guidance subnetwork, and
one primary text detector. The guidance subnetwork is learned from the input images with
text regions as supervision signals. It targets at finding text regions and filtering out most
of non-text regions coarsely. The primary text detector uses any existing single forward
CNN based text detection method as backbones, where every convolution and nonlinear
operation are conducted only in the guidance mask predicted by the guidance subnetwork
(See Figure 1). In this way, the primary text detector focuses on distinguishing between text
and hard non-text, and predicting bounding boxes of text.

Improving speed and accuracy simultaneously is challenging. In order to achieve good
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trade-off between guidance performance and computational load, we introduce a context
module with pyramid pooling layers, to capture global context information in the guidance
subnetwork. Training the primary text detector, only with the guidance mask derived from
the ground truth, would lead to high false alarm rate, as it does not learn enough background
patterns. To resolve this issue, we propose background-aware block-wise random synthesis
to expand the guidance mask, by randomly synthesizing foreground blocks in background ,
with a fixed probability during training (See Figure 1). It can be interpreted as a special kind
of dropout.

The proposed Guided CNN is a general framework, which can be easily plugged into
existing single forward CNN based text detection methods. We conduct experiments on
standard benchmarks, namely SWT [5], ICDAR 2011 [38], ICDAR 2013 [23] and ICDAR
2015 [24], with various backbones. The proposed method significantly speeds up the recent
state-of-the-art methods [52, 64], while achieving a higher accuracy on average. Specifically,
on ICDAR 2013, it speeds up CTPN [52] by 2.9 times, while improving accuracy by 1.5% on
average. On ICDAR 2015, it speeds up EAST [64] by 2.0 times, while improving accuracy
by 1.0%. It achieves an F-measure of 0.901 on ICDAR 2013, and 0.823 on ICDAR 2015
with a single scale test without bells and whistles.

2 Related Work
Existing methods in the literature for text detection can roughly be categorized into two ap-
proaches, namely traditional feature based approaches and deep learning based approaches.

Traditional feature based approaches. Hand-crafted features such as wavelet, gradi-
ent, and HOG, which are widely used in other computer vision applications, were introduced
for text detection in [1, 28, 33, 47, 51]. Later on, Stroke Width Transform (SWT) was pro-
posed to find the value of stroke width for each image pixel [5, 55]. It was extended by
incorporating color cues of text pixels, leading to significantly enhanced performance on
inter-component separation and intra-component connection [15]. Extremal Regions (ER)
were employed to generate character candidates [39, 41], which was then improved by Max-
imally Stable Extremal Regions (MSERs) [16, 57, 58]. Different from all the above methods
which use traditional hand-crafted features, the proposed general framework unifies feature
extraction and text detection in a deep neural network, and both the feature extractor and
detector are trained in an end-to-end fashion.

Deep learning based approaches. Earlier work [12, 17, 19, 53] in this stream detected
text with CNNs on sliding windows or region proposals. They didn’t share computation
between sliding windows or region proposals, and thus leaded to slow training and testing.
Inspired by the state-of-the-art object detection, and segmentation techniques, such as Faster
R-CNN [44], SSD [35] and FCN [45], a number of text detection methods with a single
forward pass were proposed. Yao et al. [56] and Zhang et al. [62] estimated text regions,
individual characters and their relationship with FCN. Different from general objects, words
tend to have large aspect ratios, and multiple orientations. To this end, TextBoxes [32] em-
ployed default boxes with big range aspect ratios and vertical offsets. CTPN [52] fixed the
width of default boxes and only predicted height of each default box. Deep matching prior
network [36] used quadrilateral sliding windows, and EAST [64] directly predicted quadri-
lateral shapes on convolutional feature maps. Ma et al. [37] proposed rotation proposals to
detect arbitrary-oriented scene text while Jiang et al. [22] predicted axis-aligned bounding
box and inclined bounding box as multi-task learning. Different from all the above methods,
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Figure 3: The Guided CNN framework for text detection. It consists of one guidance subnetwork
indicated by the red dash rectangle, one primary text detector indicated by the blue dash rectangle.
Given an input image (a), we first use CNN to get the convolutional feature map (b), then a context
module (c) is used to capture multi-scale context and predict one guidance map, followed by binarizing
(d) the guidance map to one guidance mask (e). Finally, the (expanded) guidance mask is used to guide
the primary text detector to detect text (during training), resulting in the final detection (f).

the proposed Guided CNN is a general framework to improve both the accuracy and speed
based on existing text detectors with a single forward pass.

Our work is related to the work of network acceleration. Linear decomposition was
proposed to accelerate layers of CNNs [4, 18, 26], which was further extended by consid-
ering nonlinear approximation in [61]. Quantization, pruning, and Huffman coding were
proposed to speed up CNNs and compress its weights in [8, 54]. Weights of CNNs were
binarized while keeping the structure of network unchanged in [2, 6, 43, 49]. Our proposed
Guided CNN is orthogonal to those methods and can be combined with them for further
acceleration.

Our work is also related to cascaded CNNs. [31, 42, 59, 60] first used a sliding window
method, a fully convolution network, or a region proposal network to generate face candi-
dates, and then one by one fed each cropped face candidate into a series of cascaded CNNs
for further filtering and bounding box refinement. [30] treated a single deep model as a cas-
cade of several sub-models and processed harder regions progressively. Different from the
above methods, our Guided CNN has no object (i.e., text) candidates, but predicts a guid-
ance mask which can be of any shape to tell the primary text detector where its convolution
and nonlinear operations are conducted.

3 Guided CNN

Our proposed Guided CNN is based on the observation that text appears very sparsely in
natural scene images as shown in Figure 2. We target at improving the speed and accuracy
of existing CNN base text detectors by filtering out most of the background. We achieve
these two goals by proposing Guided CNN with a carefully-designed network architecture
and its corresponding training procedure. An overview of our framework is illustrated in
Figure 3. It consists of a guidance subnetwork, and a primary text detector. The guidance
subnetwork is designed to coarsely predict the guidance mask, i.e., the text regions. The
primary text detector conducts convolution and non-linear operations only in the guidance
mask. Our Guided CNN is a general framework for text detection. Its primary text detector
can use any existing single forward CNN based text detector as backbone. We denote Guided
CNN with backbone using the nomenclature Guided backbone. Guided CNN with CTPN as
backbone, for example, is called Guided CTPN.
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Figure 4: Quantitative and qualitative com-
parisons of the guidance subnetwork with
and without the context module. (a) Re-
call precision curves of the guidance sub-
network with or without the context mod-
ule. (b) The left and right columns show
the input images superposed with the pre-
dicted guidance mask without and with the
context module, respectively.

3.1 Guidance Subnetwork
The guidance subnetwork uses the pretrained PVANET [25] to extract the convolutional
feature map as shown in Figure 3 (b). The final feature map, i.e., conv5_4, is of 1

32 size of
the input image. On the top of the map, we use a context module to extract multiple scale
context and predict the guidance as shown in Figure 3 (c). Its output keeps 1

32 of the input
image, and is fed into a cross entropy loss layer during training. We generate the ground
truth guidance mask using text bounding boxes of training data. We denote a rectangle by
a four-tuple (r,c,h,w) that specifies its top-left corner (r,c) and its height and width (h,w).
For high recall, we set the ground truth label of the location (y,x) on the final prediction
guidance map to be 1 as long as its corresponding rectangle (32y− 16,32x− 16,32,32) in
the input image has intersection with any text bounding box. The predicted guidance map is
binarized (Figure 3 (d)) with a threshold τ to a guidance mask as shown in Figure 3 (e).

Inspired by the recent advancement of image segmentation [34], we design the context
module with pyramid pooling. As shown in Figure 3 (c), the context module consists of 3
levels. At the first level (the first row), feature vectors at each location are l2 normalized,
followed by a convolutional layer to predict the guidance map. The latter two levels follow
the same procedure, except that they use one average pooling layer with stride 2 to down-
sample the feature map at the beginning and up-sample back after predicting the guidance
map at the end. The normalization layer at each level is introduced to avoid the unbalance
magnitude of the feature map. The predicted guidance maps of all levels are element-wise
added together before feeding them to the loss layer.

The context module is essential to guarantee that the guidance subnetwork gets high
recall and high precision. Figure 4 (a) compares the recall and precision of the guidance sub-
network with context module and those without it (i.e., the first level prediction) on ICDAR
2013. It has been shown that the guidance subnetwork with context module obtains much
more accurate guidance prediction than that without it. Figure 4 (b) visualizes the guidance
mask (binarized guidance map) predicted with context module and that without it. Obvi-
ously, context module can reduce false alarms greatly and increase recall. We emphasize
that the cost of context module can be ignorable compared with that of the whole guidance
subnetwork since the feature map size of context module is small enough (i.e., 1

32 of the
input image size).

3.2 Primary Text Detector
The primary text detector can use any existing single forward CNN based text detector as
backbone. In existing text detectors, each convolution layer has only one input, convolution
operation is done in the whole input feature map. Instead, in our primary text detector, each
convolution layer has two inputs, namely, the input feature map and the guidance mask pre-
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Figure 5: Illustration of effi-
cient implementation of the
guided convolution. The red
indicates the feature vectors
in the guidance mask.

Figure 6: Performance improved by background-aware block-
wise random synthesis. � indicates CTPN, ? indicates apply-
ing the predicted guidance mask on CTPN during testing with-
out retraining, � indicates Guided CTPN trained with the pre-
dicted guidance mask, H indicates Guided CTPN trained with
the predicted guidance mask and random synthesis, and • in-
dicates Guided CTPN trained with the ground truth mask and
random synthesis.

dicted by the guidance subnetwork, and convolution operation is done only in the guidance
mask.

All the regions in the guidance mask are handled in the primary text detector with one
pass but not one by one. To this end, we implement a new layer called guided convolution
by modifying the “im2col” in caffe [20] as shown in Figure 5. Different from the original
“im2col” which reorders the input feature map into a big matrix, our guided convolution
layer reorders the input feature vectors only in the guidance mask (Figure 5 (a)) and generates
a much smaller matrix (Figure 5 (b)). After matrix multiplication with the convolution filter
matrix (Figure 5 (c)), its output is inserted back into a big output feature map with zero
filling in background (Figure 5 (d)). From Figure 5, it can be concluded that Guided CNN
can speed up its backbone by r times with ignoring the overhead of the guidance subnetwork
if the guidance mask accounts for the ratio of 1

r over the whole feature map area.

3.3 Training with Background-aware Block-wise Random Synthesis

Training the primary text detector with guidance is not trivial. Directly training the primary
text detector leads to a high false alarm rate. It is reasonable since the primary text detector
fails to learn many background pattern variations during training.

To this end, we expand the predicted guidance mask by randomly synthesizing mask
blocks with size 32× 32 (since each location represents 32× 32 rectangle in the input im-
age) in the background with a probability p during training. We experimentally find that
this simple approach is very effective, and can improve the final text detection performance
greatly. When p = 0, the primary text detector is trained without randomly synthesis. When
p = 1, it is degraded to its backbone without the guidance mask where convolution and other
non-linear operations are conducted in the whole feature map.

Figure 6 compares the results on ICDAR 2013 with different training strategy. Firstly,
we directly apply our predicted guidance mask on the original CTPN without retraining.
It performs slightly worse than the original CTPN. It is straightforward since the contour
patterns on the feature maps caused by predicted mask are never learned during training.
Therefore, we then retrain Guided CTPN with the Predicted Guidance (PG). Its performance
is improved but still worse than CTPN. Experimental results show that it has many false
alarms. As we discussed before, totally dropping background patterns causes this issue.
It is further validated in our third strategy, where the primary text detector is trained with
both the predicted guidance mask and background-aware block-wise random Synthesis (Syn)
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(p = 0.4). Training with this strategy performs even better than the original CTPN, while
speeding up considerably. Although the predicted guidance mask is with high recall, it might
miss some small or big-scale texts. To resolve this issue, we instead choose the forth strategy,
where the Ground Truth guidance mask (GT), together with random Synthesis (Syn), are
used to train the primary text detector. We find that this training strategy further gives a
better performance, in terms of recall and precision. The rest of experimental results is
reported using this training strategy except as otherwise noted.

Advantages. Training the primary text detector with the ground truth guidance and ran-
dom synthesis achieves two obvious advantages. First, the primary text detector can obtain
better performance than its backbone while speeding up it greatly. Second, the training of
guidance subnetwork, and that of the primary text detector are not correlated. Therefore,
they can be trained individually and in parallel, leading to convenient deployment.

Connection with Dropout. One possible explanation for our background-aware block-
wise random synthesis is to dropout [50] feature map with probability 1− p in background.
Following standard test procedure of dropout, we multiply the feature map in the primary
text detector with a scale of p but not 0 in background regions during testing, the primary
text detector can be further improved. For clarify, we called this testing method as Guided
backbone+. For example, Guided CNN with CTPN as its backbone is called Guided CTPN+
if it follows the dropout test procedure when testing. We emphasize that Guided backbone+
would not accelerate its backbone. It can be used in the case when accuracy but not speed is
most important.

The background-aware block-wise random synthesis is different from the standard dropout.
First, the standard dropout drops feature activations independently while our method drop
all activations of one block once. Second the standard dropout drops activation everywhere
while our method only in the background (non masked regions). We did experiments by
inserting one dropout layer before the detection layer, and didn’t observe any improvement.

4 Experiments
We conduct comprehensive ablation experiments along with a thorough comparison of the
proposed Guided CNN and the state-of-the-art text detection methods. We instantiate our
Guided CNN with CTPN [52] and EAST [64] since they are the state-of-the-art text detection
methods for near horizontal text and multi-orientation text respectively.

4.1 Datasets and Evaluation
The proposed method are evaluated on four text detection benchmarks, namely, SWT [5],
ICDAR 2011 [38], ICDAR 2013 [23], and ICDAR 2015 [24]. ICDAR datasets consist of
229 images for training and 255 for testing, 229 for training and 233 for testing, and 1,000
for training and 500 for testing respectively. All the images are labeled in word level. IC-
DAR 2011, and ICDAR 2013 focuses on horizontal or near-horizontal text while ICDAR
2015 targets at incidental scene text with multiple orientations. The SWT datasets contains
307 color images with sizes ranging from 1024× 368 to 1024× 768. The SWT dataset is
more challenging than ICDAR 2011 and ICDAR 2013 because of extremely smaller texts,
repeating patterns, various plants, etc. We follow previous work by using standard evalu-
ation protocols which are provided by the dataset creators or competition organizers. Our
training dataset contains the training sets of the ICDAR 2013 and ICDAR 2015. We also
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Figure 7: Impact of the probability p of background-aware block-wise
random synthesis. As discussed in Section 3.3, if we interpret the
proposed background-ware block-wise random synthesis as dropout,
Guided CTPN is a kind of approximation of Guided CTPN+ with ig-
noring feature maps scaled by p in background. as p increases from 0
to 1, the approximation error becomes unignorable. Therefore, Guided
CTPN achieves best trade-off at a smaller p (i.e., p = 0.4).

collect images from Internet as the training data as done in [11, 52]. We have 4000 training
images in total.

4.2 Implementation Details
We use caffe [20] to implement all our experiments except the training related with EAST [64]
which is done with tensorflow.

For the guidance subnetwork, its backbone is pretrained on ImageNet. We preprocess
the input image as its corresponding primary text detector. We employ multi-step learning
rate policy with the base learning rate being 0.01. The learning rate decays by 10 times every
6000 iterations, and the maximum iteration size is set to 30000. For stable training, we set
iter_size to 10 to obtain stable gradients.

For the primary text detector, we finetune its corresponding backbone model with the
ground truth guidance expanded by random synthesis. CTPN [52] is reimplemented by our-
selves as its model and source code released by its original authors without side refinement1.
The source code and the model of EAST is reimplemented and released by the third party 2.
The re-implemented EAST uses ResNet-50 [9] as its backbone model, while the original
EAST VGG [48], PVANET [25] and PVANET with double channels in [63]. The input im-
age preprocessing procedure keeps the same as that in [36, 52] during training and testing.

Runtime. As for testing the forward speed, we measure the runtime of all models on a
PC with i7 CPU with caffe [20] as text detection approaches are deployed on devices with
CPU in most scenarios. The runtime of Guided CNN (or Guided CNN+) includes that of
two subnetworks. For models related with EAST, we convert them to caffe models before
testing. All results including accuracy and runtime are reported with a single scale test.

4.3 Ablation Experiments
We run a number of ablations to analyze the impact of hyper parameters and the effectiveness
of each component of the proposed Guided CNN.

The impact of parameters τ and p. There are only two parameters (i.e., the threshold
τ to binarize the predict guidance map as described in Section 3.1 and the probability p
of background-aware block-wise random synthesis as described in Section 3.3) in Guided
CNN. To demonstrate the impact of the parameters on the performance of the model, we
conduct experiments on ICDAR 2013 based on CTPN under different parameter settings.

When τ is set to 0.1, 0.2, 0.3 and 0.4, the guidance subnetwork obtains the recall of 0.97,
0.95, 0.94, and 0.92 while Guided CTPN achieves speedup by 2.69, 2.90, 3.01, and 3.12
times respectively. We fix τ to 0.2 for all rest experiments since it obtains good trade-off
between recall and speedup. Figure 7 shows the performance of Guided CTPN and Guided

1https://github.com/tianzhi0549/CTPN
2https://github.com/argman/EAST
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Method SWT ICDAR 2011 ICDAR 2013
Recall Precision F-measure Speedup Recall Precision F-measure Speedup Recall Precision F-measure Speedup

CTPN 0.635 0.688 0.660 ×1 0.858 0.867 0.862 ×1 0.861 0.899 0.880 ×1
Guided CTPN 0.669 0.664 0.667 ×××444...222 0.868 0.893 0.880 ×××222...999 0.874 0.916 0.895 ×××222...999
Guided CTPN+ 0.660 0.691 0.675 ×0.7 0.875 0.906 0.890 ×0.7 0.880 0.924 0.901 ×0.7

Table 1: Effectiveness of guidance on SWT, ICDAR 2011 and ICDAR 2013.

Method Recall Precision F-measure Speedup
EAST 0.773 0.847 0.808 ×1
Guided EAST 0.789 0.848 0.818 ×××222...000
Guided EAST+ 0.789 0.866 0.823 ×0.8

Table 2: Effectiveness of guidance on ICDAR 2015. For fair comparison, we compare Guided EAST
and Guided EAST+ with the EAST result re-implemented by the third party.

ICDAR 2013 ICDAR 2015

Method IC13 Eval DetEval Method R P FR P F R P F
Jiang [21] - - - 0.915 0.922 0.919 SSTD [11] 0.739 0.802 0.769
WordSup [14] - - - 0.875 0.933 0.903 SegLink [46] 0.768 0.731 0.750
SegLink [46] - - - 0.830 0.877 0.853 WordSup [14] 0.770 0.793 0.782
Yao [56] 0.802 0.889 0.843 - - - R2CNN* [22] 0.743 0.764 0.753
Zhang [62] 0.780 0.880 0.830 - - - DMPNet [36] 0.682 0.732 0.706
He [13] 0.810 0.920 0.860 - - - RRPN [37] 0.770 0.840 0.800
TextBoxes [32] 0.740 0.860 0.800 0.740 0.880 0.810 Original EAST* [64] 0.735 0.836 0.782
SSTD [11] 0.857 0.884 0.870 0.862 0.893 0.877
Original CTPN [52] 0.737 0.928 0.822 0.830 0.930 0.877
Guided CTPN 0.846 0.881 0.863 0.874 0.916 0.895 Guided EAST 0.789 0.848 0.818
Guided CTPN+ 0.846 0.885 0.870 0.880 0.924 0.901 Guided EAST+ 0.789 0.866 0.823

Table 3: Comparisons with state-of-the-art text detection methods on ICDAR 2013 and ICDAR 2015.
* indicates the best result with a single scale test.

CTPN+ with different p. It has been shown that Guided CTPN+ obtains its best result when
p = 0.8 while Guided CTPN obtains its best result when p = 0.4. In the rest experiments,
we report results of Guided CNN with p = 0.4 while those of Guided CNN+ with p = 0.8.

The effectiveness of guidance. We investigate the effectiveness of the guidance. We
employ CTPN and EAST as backbone, and evaluate Guided CNNs and their corresponding
backbones on benchmark datasets.

From Table 1, Guided CTPN consistently outperforms CTPN in terms of the F-measure
while achieving considerable speedup. Guided CTPN+ performs best with sacrificing some
speed. It can be used in the case when computation resource is adequate. Specifically, on IC-
DAR 2011 and ICDAR 2013, compared with CTPN, Guided CTPN improves the F-measure
by 1.5 ∼ 1.8% while speeding up 2.9 times. Guided CTPN+ improves the F-measure by
2.1 ∼ 2.8% at the cost of 0.3 times slowing down. On SWT, Guided CTPN and Guided
CTPN+ achieve 0.7% and 1.5% F-measure gain respectively, although its ground truth is
annotated in text line level which is different from that of our training data (e.g., training
set of ICDAR 2013). Guided CTPN eventually speeds up 4.2 times. Surprisingly, Guided
CTPN obtains a higher recall rate although it filters out most of regions of input image, we
believe that it is because the guidance mechanism makes the text detector to focus on dis-
tinguishing between hard non-text and text regions, and bounding box regression, leading
to better training and generalization. We also analyze the runtime for each component of
Guided CTPN on ICDAR 2013. The guidance subnetwork accounts for 15% of the runtime
while the primary text detector 85%.

From Table 2, it has been shown that Guided EAST improves the F-measure by 1.0%
while speeding up 2.0 times compared with EAST. Guided EAST+ improves the F-measure
by 1.5% while slowing down 20%.

Comparisons with state-of-the-art results. From Table 3, it has been shown that
Guided CTPN and Guided CTPN+ are comparable with [11] and outperform others using
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the IC13 evaluation protocol. They also outperform others except [21] using the DetEval
evaluation protocol. Note that our Guided CTPN is based on a simple architecture of CTPN
and accelerates CTPN significantly while [21] combined a segmentation and detection net-
works. Guided EAST and Guided EAST+ outperform others. Especially, Guided EAST+
outperforms the second best method RRPN by 2.3%.

5 Conclusion
We have proposed a general framework for text detection called Guided CNN to improve
the accuracy and the speed of existing single forward CNN based text detectors simultane-
ously. We have designed a context module to capture multi-scale context in the guidance
subnetwork, leading to effective guidance mask predictions. We have proposed a novel
background-aware block-wise random synthesis training strategy, resulting in accuracy im-
provement and convenient deployment. It can be interpreted as a special kind of dropout.
The proposed Guided CNN is a general framework which can be plugged into any existing
single forward CNN based text detectors. We have demonstrated its general applicability by
instantiating it with CTPN and EAST as backbone. Extensive experiments have evaluated
its effectiveness and efficiency.
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