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Abstract. This paper proposes a simple but effective graph-based agglomerative
algorithm, for clustering high-dimensional data. We explore the different roles of
two fundamental concepts in graph theory, indegree and outdegree, in the con-
text of clustering. The average indegree reflects the density near a sample, and
the average outdegree characterizes the local geometry around a sample. Based
on such insights, we define the affinity measure of clusters via the product of
average indegree and average outdegree. The product-based affinity makes our
algorithm robust to noise. The algorithm has three main advantages: good per-
formance, easy implementation, and high computational efficiency. We test the
algorithm on two fundamental computer vision problems: image clustering and
object matching. Extensive experiments demonstrate that it outperforms the state-
of-the-arts in both applications.1

1 Introduction

Many problems in computer vision involve clustering. Partitional clustering, such as
k-means [1], determines all clusters at once, while agglomerative clustering [1] begins
with a large number of small clusters, and iteratively selects two clusters with the largest
affinity under some measures to merge, until some stopping condition is reached. Ag-
glomerative clustering has been studied for more than half a century, and used in many
applications [1], because it is conceptually simple and produces an informative hierar-
chical structure of clusters.

Classical agglomerative clustering algorithms have several limitations [1], which
have restricted their wider applications in computer vision. The data in computer vi-
sion applications are usually high dimensional. The distributions of data clusters are
often in different densities, sizes, and shapes, and form manifold structures. In addition,
there are often noise and outliers in data. The conventional agglomerative clustering
algorithms, such as the well-known linkage methods [1], usually fail to tackle these
challenges. As their affinities are directly computed using pairwise distances between
samples and cannot capture the global manifold structures in high-dimensional spaces,
these algorithms have problems of clustering high-dimensional data, and are quite sen-
sitive to noise and outliers [1].

1 The code and supplemental materials are publicly available at
http://mmlab.ie.cuhk.edu.hk/research/gdl/
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Fig. 1. (a) Indegree can be use to detect the change of densities. The density in Cluster a is high,
and the density in Cluster b is low. The vertices inside Cluster a are strongly connected, but there
is no outedge to vertices outside Cluster a. So the indegree of k from Cluster a is nonzero, while
the indegree of i (a vertex in Cluster b) and j (an outlier) from Cluster a are zero. If an undirected
graph is considered without separating indegrees and outdegrees, both i and j have the same
degree from Cluster a as k. (b) The product of the indegree and outdegree is an affinity measure
robust to noisy edges between the two clusters. Under this measure, Cluster a and Cluster b have
a zero affinity, i.e., the sum of product of indegree and outdegree for all vertices is 0, and thus
they are separated well.

To tackle these problems, we propose a simple and fast graph-based agglomerative
clustering algorithm. The graph representation of data has been extensively exploited
in various machine learning topics [2,3,4,5,6], but has rarely been utilized in agglom-
erative clustering. Our algorithm builds K-nearest-neighbor (K-NN) graphs using the
pairwise distances between samples, since studies [4] show the effectiveness of using
local neighborhood graphs to model data lying on a low-dimensional manifold embed-
ded in a high-dimensional space.

We use the indegree and outdegree, fundamental concepts in graph theory, to charac-
terize the affinity between two clusters. The outdegree of a vertex to a cluster measures
the similarity between the vertex and the cluster. If many of the K-NNs of the vertex
belong the cluster, the outdegree is large. The outdegree can capture the manifold struc-
tures in the high dimensional space. The indegree of a vertex from a cluster reflects
the density near the vertex. It is effective for detecting the change of densities, which
often occurs at the boundary of clusters. Therefore, we use it to separate clusters close
in space but different in densities, and also reduce the effect of noise. An example is
shown in Fig. 1(a). To our best knowledge, properties of the indegree and outdegree
have not been explored by any existing clustering algorithm, although they were suc-
cessfully applied in analysis of complex networks such as World Wide Web [9] and
social networks [10] and showed interesting results.
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Fig. 2. Results of different clustering algorithms on a synthetic multiscale dataset. Our algorithm
can perfectly discover the three clusters with different shapes, sizes, and densities. The output
clusters are shown in color (best viewed on screen).

Our affinity measure between two clusters is defined as follows. First, the structural
affinity from a vertex to a cluster is defined via the product of the average indegree from
the cluster and average outdegree to the cluster. Intuitively, if a vertex belongs to a clus-
ter, it should be strongly connected to the cluster, i.e., both its indegree and outdegree
are large. Otherwise, either the indegree or outdegree is small. Therefore, the product
of indegree and outdegree can be a good affinity measure (Fig. 1(b)). We show that
the correlation between the inter-cluster indegree and outdegree is weak across differ-
ent vertices, if the two clusters belong to different ground-truth clusters, using synthetic
data in Fig. 3. Then, the affinity between two clusters is naturally the aggregated affinity
measure for all the vertices in the two clusters.

Our algorithm has three main advantages as follows.

First of all, it has outstanding performance, especially on noisy data and multiscale
data (i.e., clusters in different densities). The visual comparisons with linkage meth-
ods [1], graph-based average linkage, affinity propagation (AP) [7], spectral clustering
(SC) [3], and directed graph spectral clustering (DGSC) [8] on synthetic multiscale data
are shown in Fig. 2. Noise and multiple scales can degrade the performance of spec-
tral clustering greatly [11], while the indegree and outdegree in our algorithm detect
the boundary of scales automatically2 and reduce the effect of noise. In Sec. 4, exten-
sive experiments on real data, including imagery data and feature correspondence data,
demonstrate its superiority over state-of-the-art methods. These experiments aim at two
fundamental problems in computer vision, i.e., image clustering and object matching,
and the results suggest many potential applications of our work.

Second, it is easy to implement. This affinity measure can be expressed in a ma-
trix form and implemented with vector additions and inner-products. Therefore, our
algorithm can be implemented without any dependency on external numerical libraries,

2 E.g., if cluster a has higher density than cluster b, the boundary of cluster a will have high
indegree and low outdegree, while the boundary of cluster b will have low indegree and high
outdegree.
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such as eigen-decomposition which was extensively employed by many clustering
algorithms [2,3,12].

Finally, it is very fast. We propose an acceleration method for our algorithm. In
practice, our algorithm is much faster than spectral clustering [2,3], especially on large-
scale data.

2 Related Work

The literature dedicated to agglomerative clustering is abundant [1,13,14]. Linkages [1],
e.g., average linkage, define the affinity based on pairwise distances between samples.
Since pairwise distances do not well capture the global structures of data, these methods
fail on clustering data with complex structures and are sensitive to noise [1] (see the ex-
ample in Fig. 2). Many variants of linkage methods, such as DBSCAN [15], have been
proposed in the data mining community and show satisfactory performance. However,
they usually fail to tackle the great challenge from high-dimensional spaces, because
their sophisticated affinity measures are based on observations from low-dimensional
data [16].

Several algorithms [17,18,19] has attempted to perform agglomerative clustering on
the graph representation of data. Chameleon [17] defines the cluster affinity from rel-
ative interconnectivity and relative closeness, both of which are based on a min-cut
bisection of clusters. Although good performance was shown on 2D toy datasets, it suf-
fers from high computational cost because its affinity measure is based on a min-cut
algorithm. Zell [18] describes the structure of a cluster via the zeta function and defined
the affinity based on the structural changes after merging. It needs to compute matrix in-
verse in each affinity computation, so it is much slower than our simple algorithm (see
Sec. 4.1). Felzenszwalb and Huttenlocher proposed an effective algorithm for image
segmentation [19].

Besides agglomerative clustering, K-means [1] and spectral clustering [2,3,20] are
among the most widely used clustering algorithms. However, K-means is sensitive to
the initialization and difficult to handle clusters with varying densities and sizes, or
manifold shapes. Although spectral clustering can handle the manifold data well, its
performance usually degrades greatly with the existence of noise and outliers, because
the eigenvectors of graph Laplacian are sensitive to noisy perturbations [5]. Affinity
Propagation [7] explores the intrinsic data structures by message passing among data
points. Although it performs well on high-dimensional data, it usually requires consid-
erable run-time, especially when the preference value cannot be manually set.

Directed graphs have been studied for spectral clustering (e.g., [8]). However, these
methods symmetrize the directed graph before the clustering task. In contrast, we only
symmetrize the affinity between two clusters, while keep the directed graph during the
clustering process. Therefore, our algorithm utilizes more information from the asym-
metry and is more robust to noisy edges (see Fig. 2 for a comparison between DGSC
[8] and our algorithm).
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3 Graph Degree Linkage

3.1 Neighborhood Graph

Given a set of samples X = {x1,x2, ...,xn}, we build a directed graph G = (V,E),
where V is the set of vertices corresponding to the samples in X , and E is the set of
edges connecting vertices. The graph is associated with a weighted adjacency matrix
W = [wij ], where wij is the weight of the edge from vertex i to vertex j. wij = 0 if
and only if there is no edge from i to j.

To capture the manifold structures in high-dimensional spaces, we use the K-NN
graph, in which the weights are defined as

wij =

{
exp

(
− dist(i,j)2

σ2

)
, if xj ∈ NK

i ,

0, otherwise,
(1)

where dist(i, j) is the distance between xi and xj , NK
i is the set of K-nearest neigh-

bors of xi, and σ2 is set as σ2 = a
nK

[∑n
i=1

∑
xj∈NK

i
dist(i, j)2

]
. K and a are free

parameters to be set. In a K-NN graph, there is an edge pointing from xi to xj with
weight wij , if xj ∈ NK

i .

3.2 Algorithm Overview

The graph degree linkage (GDL) algorithm begins with a number of initial small clus-
ters, and iteratively selects two clusters with the maximum affinity to merge. The affini-
ties are computed on the K-NN graph, based on the indegree and outdegree of vertices
in the two clusters.

The initial small clusters are simply constructed as weakly connected components of
a K0-NN graph, where the neighborhood size K0 is small, typically as 1 or 2. Then,
each component is an initial cluster, and each sample is assigned to only one cluster.

Definition 1. A connected component of an undirected graph is a maximal connected
subgraph in which any two vertices are connected to each other by paths.

A weakly connected component of a directed graph is a connected component of the
undirected graph produced by replacing all of its directed edges with undirected edges.

The GDL algorithm is presented as Algorithm 1, with details given in the following
subsection.

3.3 Affinity Measure via Product of Indegree and Outdegree

The affinity measure between two clusters is the key of an agglomerative clustering
algorithm. Our affinity measure is based on indegree and outdegree in the graph repre-
sentation. For simplicity, we start from measuring the affinity between a vertex and a
cluster.

Indegree and outdegree. Considering a vertex and a cluster, the connectivity between
them by inedges and outedges can be quantified using the concepts of indegree and
outdegree.
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Algorithm 1. Graph Degree Linkage (GDL)
Input: a set of n samples X = {x1,x2, · · · ,xn}, and the target number of clusters nT .
Build the K0-NN graph, and detect its weakly connected components as initial clusters. Denote
the set of initial clusters as V c = {C1, · · · , Cnc}, where nc is the number of clusters.
Build the K-NN graph, and get the weighted adjacency matrix W.
while nc > nT do

Search two clusters Ca and Cb, such that {Ca, Cb} = argmaxCa,Cb∈V c ACa,Cb , where
ACa,Cb is the affinity measure between Ca and Cb, computed using Eq. (5).
V c ← {V c \ {Ca, Cb}} ∪ {Ca ∪ Cb}, and nc = nc − 1.

end while
Output: V c.
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Fig. 3. To verify the robustness of the product of indegree and outdegree as an affinity measure
from a vertex i to a cluster C, we compare statistics in two cases: i and C belong to different
ground-truth clusters, e.g., i ∈ C1 and C = C2 as in (a), and i and C are in the same ground-truth
cluster, e.g., i ∈ C1 and C = C1 as in (b). We see that, in the first case, the product is a quantity
more robust than the indegree or outdegree. For all i ∈ C1, such that deg−i > 0 or deg+i > 0, the

mean and proportion of nonzero values (PNZ) of
√

deg−i deg+i are much smaller than those of

deg−i and deg+i , which implies a small affinity between i and C. Here the square root is for fair

comparison of the quantities. In contrast, in the second case, the mean and PNZ of
√

deg−i deg+i

are close to those of deg−i and deg+i , which means that the product keeps the large affinity well.
The correlation of deg−i and deg+i , which is weak in (a) and strong in (b), further verifies the
effectiveness of our affinity measure for reducing noisy edges across ground-truth clusters and
keeping edges inside ground-truth clusters.

Definition 2. Given a vertex i, the average indegree from and the average outdegree
to a cluster C is defined as deg−i (C) = 1

|C|
∑

j∈C wji and deg+i (C) = 1
|C|

∑
j∈C wij ,

respectively, where |C| is the cardinality of set C.

As we stated in Sec. 1, the indegree measures the density near sample i, and the out-
degree characterizes the K-NN similarity from vertex i to cluster C. We use the size
of the cluster to normalize the degrees, otherwise, the algorithm may favor of merging
large clusters instead of merging small clusters with dense connections. We find that in
practice the normalized degrees work much better than the unnormalized degrees.

Affinity between a Vertex and a Cluster. A vertex should be merged to a cluster if
it is strongly connected to the cluster by both inedges and outedges. Mathematically,
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the correlation of two types of degree is weak, if the vertex and the cluster belong to
different ground-truth clusters, and strong, otherwise. To verify this intuition, we show
such statistics on synthetic data in Fig. 3. Therefore, we define the affinity as the product
of the average indegree and average outdegree, i.e.,

Ai→C = deg−i (C) deg+i (C). (2)

This affinity is robust to noisy edges between different ground-truth clusters because
the product can be zero if the inedges and outedges do not coincide.

Affinity between Two Clusters. Following the above, we define the asymmetric affin-
ity from cluster Cb to cluster Ca by summing up with respect to all the vertices in Cb,
i.e.,

ACb→Ca =
∑
i∈Cb

Ai→Ca =
∑
i∈Cb

deg−i (Ca) deg+i (Ca). (3)

Finally, we have the symmetric affinity used in our algorithm as

ACa,Cb
= ACb→Ca +ACa→Cb

(4)

Efficient Computation of Affinity. Our affinity measure can be computed efficiently
using the following theorem.

Theorem 1. The affinity between Ca and Cb defined in Eq. (4) can be expressed in the
matrix form

ACa,Cb
=

1

|Ca|21
T
|Ca|WCa,Cb

WCb,Ca1|Ca| +
1

|Cb|21
T
|Cb|WCb,CaWCa,Cb

1|Cb|, (5)

where WCa,Cb
is the submatrix of W whose row indices correspond to the vertices in

Ca and column indices correspond to the vertices in Cb, i.e., the weights of edges from
Ca to Cb, and 1L is an all-one vector of length L.

Remark 1. The computation is reduced to vector additions and inner-products. So, our
algorithm is easy to implement.

Proof. It is easy to see that

deg−i (Ca) =
1

|Ca|
[
1T
|Ca|WCa,Cb

]
i
, (6)

deg+i (Ca) =
1

|Ca|
[
WCb,Ca1|Ca|

]
i
, (7)

where [v]i is the i-th element of vector v. Then, by Eq. (3), we can obtain the following
lemma.

Lemma 2
ACb→Ca =

1

|Ca|21
T
|Ca|WCa,Cb

WCb,Ca1|Ca|. (8)

Finally, Theorem 1 can be directly implied by Lemma 2 using Eq. (4).
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Comparison to Average Linkage. The GDL algorithm is different from average link-
age in the following three aspects. First of all, the conventional average linkage is based
on pairwise distances [1]. Although we find that average linkage has much better per-
formance on the K-NN graph than pairwise distances, we are unaware of any literature
which studied the graph-based average linkage algorithm. Second, graph-based average
linkage simply symmetrizes the directed graph by setting wij = wji = (wij + wji)/2,
while our algorithm uses the directed graph. Third, graph-based average linkage can
be interpreted as defining the affinity measure ACb→Ca = 1

|Cb|
∑

i∈Cb
[deg−i (Ca) +

deg+i (Ca)]/2 using our indegree-outdegree framework. The sum of the indegree and
outdegree is not as robust as the product of them to noise. Experimental results in Fig.
2 and Sec. 4.1 demonstrate the superiority of GDL to graph-based average linkage.

3.4 Implementations of GDL

We present two implementations of the GDL algorithm: an exact algorithm via an effi-
cient update formula and an approximate algorithm called Accelerated GDL (AGDL).
Both implementations have the time complexity of O(n2) (see Theorem 3).

Update Formula. In each iteration, we select two clusters Ca and Cb with the largest
affinity and merge them as Cab = Ca ∪ Cb. Then, we need to update the asymmetric
affinity ACab→Cc and ACc→Cab

, for any other cluster Cc.
Using Lemma 2, we find that ACab→Cc can be computed as follows.

ACab→Cc = ACa→Cc +ACb→Cc . (9)

By storing all the asymmetric affinities, the update is simple.
As the same update formula cannot be applied to ACc→Cab

, we have to compute it
directly using Eq. (8). However, the total complexity is O(n) in each iteration, due to
the row sparsity of W (see Sec. 7 in the supplemental materials for details).

The GDL algorithm with the update formula (GDL-U) is presented as Algorithm 2
in the supplemental materials.

Accelerated GDL. Although the GDL-U algorithm is simple and fast, we further pro-
pose AGDL. The major computational cost is on computing the affinities. To reduce the
number of affinities computed in each iteration, AGDL maintains a neighbor set of size
Kc for each cluster in V c, to approximate its Kc-nearest cluster set. Then, finding the
maximum affinity among all pairs of clusters can then be approximated by searching it
in all the neighbor sets. Updating the neighbor sets involves computation of the affinity
between the new cluster and a small set of clusters, instead of all the other clusters.

Denote the neighbor set of a cluster C as NC . Initially NC consists of C’s Kc-nearest
clusters. Once two clusters Ca and Cb are merged, we need to update the neighbor sets
which include Ca or Cb, and create the neighbor set of Ca ∪ Cb. We utilize two assump-
tions that (1) if Ca or Cb is among the Kc-nearest clusters of Cc, Ca ∪ Cb is probably
among the Kc-nearest clusters of Cc; (2) if Cc is among the Kc-nearest clusters of Ca or
Cb, Cc is probably among the Kc-nearest clusters of Ca∪Cb. So, the new cluster Ca∪Cb
is added to the neighbor sets which include Ca or Cb previously. To create the neighbor
set for Ca ∪ Cb, we select the Kc-nearest clusters from NCa ∪ NCb

.
The AGDL algorithm is summarized in Algorithm 3 in the supplemental materials.
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3.5 Time Complexity Analysis

We have the following theorem about the time complexity of the GDL, GDL-U and
AGDL algorithms (please refer to Sec. 7 in the supplemental materials for the proof).

Theorem 3

(a) The time complexity of the GDL algorithm (i.e., Algorithm 1) is O(n3).
(b) The time complexity of the GDL-U algorithm (i.e., Algorithm 2) is O(n2).
(c) The time complexity of the AGDL algorithm (i.e., Algorithm 3) is O(n2).

4 Experiments

In this section, we demonstrate the effectiveness of GDL and AGDL on image clus-
tering and object matching. All the experiments are run in MATLAB on a PC with
3.20GHz CPU and 8G memory.

4.1 Image Clustering

We carry out experiments on six publicly available image benchmarks, including object
image databases (COIL-20 and COIL-100), hand-written digit databases (MNIST and
USPS), and facial image databases (Extended Yale-B, FRGC ver2.0).3 For MNIST, we
use all the images in the testing set. For FRGC ver2.0, we use all the facial images in
the training set of experiment 4. The statistics of all the datasets are presented in Table
2. We adopt widely used features for different kinds of images: the intensities of pixels
as features and Euclidean distance for object and digit images, and local binary patterns
(LBP) as features and χ2 distance for facial images.

We compare the GDL-U and AGDL with eight representative algorithms, i.e., k-
medoids (k-med) [1], average linkage (Link) [1], graph-based average linkage (G-
Link), normalized cuts (NCuts) [2]4, NJW spectral clustering (NJW-SC) [3], directed
graph spectral clustering (DGSC) [8], self-tuning spectral clustering (STSC) [11] and
Zell [18]. Here we use k-medoids instead of k-means because it can handle the case
where distances between points are not measured by Euclidean distances. To fairly
compare the graph-based algorithms, we fix K = 20 and select a with the best perfor-
mance from the set {10i, i ∈ [−2 : 0.5 : 2]} on all the datasets. For our algorithms, the
parameters are fixed as K0 = 1, Kc = 10. The numbers of ground-truth clusters are
used as the input of all algorithms (e.g., nT in our algorithm).

We adopt the widely used Normalized Mutual Information (NMI) [12] to quantita-
tively evaluate the performance of clustering algorithms. The NMI quantifies the nor-
malized statistical information shared between two distributions. A larger NMI value
indicates a better clustering result.

3 COIL-20 and COIL-100 are from http://www.cs.columbia.edu/CAVE/
software/. MNIST and USPS are from http://www.cs.nyu.edu/˜roweis/
data.html. Extended Yale-B is from http://vision.ucsd.edu/˜leekc/
ExtYaleDatabase/ExtYaleB.html. FRGC ver2.0 is from http://face.nist.
gov/frgc/

4 The code is downloaded from http://www.cis.upenn.edu/˜jshi/software/,
which implements the multiclass normalized cuts algorithm [20].

http://www.cs.columbia.edu/CAVE/software/
http://www.cs.columbia.edu/CAVE/software/
http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://vision.ucsd.edu/~leekc/ExtYaleDatabase/ExtYaleB.html
http://face.nist.gov/frgc/
http://face.nist.gov/frgc/
http://www.cis.upenn.edu/~jshi/software/
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Table 1. Quantitative clustering results in NMI on real imagery data. A larger NMI value indicates
a better clustering result. The results shown in a boldface are significantly better than the others,
with a significance level of 0.01.

Dataset k-med Link G-Link NCuts NJW-SC DGSC STSC Zell GDL-U AGDL
COIL-20 0.710 0.647 0.896 0.884 0.889 0.904 0.895 0.911 0.937 0.937
COIL-100 0.706 0.606 0.855 0.823 0.854 0.858 0.858 0.913 0.929 0.933
USPS 0.336 0.095 0.732 0.675 0.690 0.747 0.726 0.799 0.824 0.824
MNIST 0.390 0.304 0.808 0.753 0.755 0.795 0.756 0.768 0.844 0.844
Yale-B 0.329 0.255 0.766 0.809 0.851 0.869 0.860 0.781 0.910 0.910
FRGC 0.541 0.570 0.669 0.720 0.723 0.732 0.729 0.653 0.747 0.746
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Fig. 4. Variations of performance of different clustering algorithms on the COIL-20 dataset, (a)
when the parameter a for controlling σ in Eq. (1) changes; (b) when we add Gaussian noise
N (0, σ2

n) to the images. The NMI differences between σn = 0 and σn = 160 are 0.048, 0.065,
0.067, 0.012, for G-Link, NJW-SC, DGSC, and AGDL, respectively.

The results measured in NMI are given in Table 1. k-medoids and average linkage
perform similar, as they heavily rely on the computation of pairwise distances and thus
are sensitive to noise, and cannot well capture the complex cluster structures in the
real data sets. NCuts, NJW-SC, and Zell have good performance on most data sets, as
they capture the underlying manifold structures of the data. STSC works fine on some
synthetic multiscale datasets in [11] but its results are worse than ours on several real
datasets in comparison. Note that STSC adaptively estimated the parameter σ2 at ev-
ery point to reflect the variation of local density while ours explores indgree/outdegree
and fixes σ2 as constant. The effective and robust affinity measure for agglomerative
clustering makes our GDL-U and AGDL algorithm performs the best among all the
algorithms. The AGDL’s results are nearly the same as GDL-U.

Compared to other graph-based algorithms, GDL-U and AGDL are more robust to
the parameter σ for building the graph, as well as the noise in the data (see Fig. 4). The
noise added to images can degrade the performance of other algorithms greatly, but our
performance is barely affected.

For the graph-based algorithms, we show their time cost in Table 2. AGDL costs the
least amount of time among all the algorithms. GDL is faster than NCuts, NJW-SC,
and DGSC, and is much faster than Zell. G-Link, which has worse performance than
AGDL, is comparable to AGDL on time cost.
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Table 2. The time cost (in seconds) of the algorithms. The minimum time cost on each dataset is
in bold. The statistics of each dataset are shown for reference.

Dataset Sample Num Cluster Num NCuts NJW-SC DGSC Zell GDL-U AGDL
COIL-20 1440 20 3.880 6.399 8.280 15.22 0.265 0.277
COIL-100 7200 100 133.8 239.7 326.4 432.9 12.81 5.530
USPS 11000 10 263.0 461.6 538.9 9703 53.64 29.01
MNIST 10000 10 247.2 384.4 460.4 64003 35.60 17.18
Yale-B 2414 38 9.412 13.99 16.00 178.2 0.731 0.564
FRGC 12776 222 577.4 914.3 1012.2 65021 49.15 18.62

(a) A pair of composite images, (b) Initial correspondences (c) Detected correspondences
one of which is warped with (533 inliers in yellow color, by AGDL (532 true, 552
σn = 50; 1200 outliers in red color, detected, F-score 0.981).

according to the ground truth);

Fig. 5. Example of object matching through feature correspondence clustering

4.2 Feature Correspondence Clustering for Object Matching

We show the effectiveness of our clustering algorithm in the presence of outliers via fea-
ture correspondence clustering. Feature correspondence clustering is commonly used
for robust object matching [21,14,22], which can deal with geometric distortions of ob-
jects across images and is a fundamental problem in computer vision. We demonstrate
that our algorithm can be effectively integrated with the framework of feature corre-
spondence clustering. Therefore, it has a range of potential applications, such as object
recognition, image retrieval, and 3D reconstruction.

We compare with two recent state-of-the-art methods, i.e., agglomerative correspon-
dence clustering (ACC) [14] and graph shift (GS) [22].5

Overview of Experiments. We follow the experiments in the ACC paper [14]. We use
composite images and their warped versions (Fig. 5(a)) to simulate cluttered scenes
where deformable objects appear. Then we can use the ground-truth for performance
evaluation. Namely, we compute the precision and recall rates of detected correspon-
dences (Fig. 5(c)), given a set of correspondences with ground-truth (Fig. 5(b)). A good
clustering algorithm can group inliers and separate outliers. It is a more direct way of

5 The code of ACC and GS are downloaded from http://cv.snu.ac.kr/research/

˜acc/, and http://sites.google.com/site/lhrbss/, respectively. We do not
present the results of spectral matching (SM) [21], because both ACC and GS outperformed
SM greatly [14,22], especially when there existed at least two clusters of correspondences
according to the ground-truth.

http://cv.snu.ac.kr/research/~acc/
http://cv.snu.ac.kr/research/~acc/
http://sites.google.com/site/lhrbss/
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Fig. 6. Performance comparison of different algorithms. In each sub-figure, one of the three fac-
tors, i.e., the number of outliers, the level of deformation σn, and the number of common sub-
images M , is varied, while the other two are fixed as the values appearing at the top. All the
results are averaged over 30 random trials.

evaluating the performance of clustering algorithms than other experiments, such as
object recognition.

Experimental Settings. We generate a pair of 3× 3 tiled images that contain M com-
mon sub-image(s). The common sub-images are randomly selected from the model
images of the ETHZ toys dataset6, and the non-common sub-images are from test im-
ages of the same dataset. The positions of all sub-images are randomly determined.
When M > 1, the common sub-images are chosen as different objects. To simulate de-
formation, one of the paired images is warped using the thin-plate spline (TPS) model.
An example of paired test images are shown in Fig. 5(a). 9 × 9 crossing points from
a 10 × 10 meshgrid on the image are chosen as the control points of the TPS model.
Then, all the control points are perturbed by Gaussian noise of N(0, σ2

n) independently,
and the TPS warping is applied based on the perturbations of control points. To obtain
the candidate correspondences between two tiled images, features are extracted by the
MSER detector, and the best 3, 000 correspondences are collected according to sim-
ilarity of the SIFT descriptors. Using the warping model, each correspondence has a
ground-truth label: true if its error is smaller than three pixels, and false otherwise. Fig.
5(b) shows the correspondences as lines, among which the yellow ones represent true

6 http://www.vision.ee.ethz.ch/˜calvin/datasets.html

http://www.vision.ee.ethz.ch/~calvin/datasets.html
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correspondences. Then, the performance of different algorithms are quantitatively eval-
uated. We use the F-score, a traditional statistical measure of accuracy, which is defined
as [precision · recall/(precision + recall)].

Parameters of ACC and GS. As we strictly follow the test protocol in the ACC paper
[14], we use the default parameters in their codes. For GS, we compute the affinity
matrix Wij = max(β−dij/σ

2
s , 0) as the paper [22], where dij is the distance between

correspondence i and correspondence j as defined in the ACC paper [14]. β, σs and
other parameters in GS are tuned to be the best.

Parameters of AGDL. For our AGDL algorithm (i.e., Algorithm 3), the parameters are
fixed as nT = 50, a = 10, K = 35, K0 = 2, and Kc = 10. We found that the GDL
works well in a large range of nT , as the number of ground-truth clusters (i.e., M ) is
very small and we can eliminate the outlier clusters by postprocessing.7

Results. As shown in Fig. 6, we vary the number of outliers, the level of deformation,
and the number of common sub-images, and compare the F-scores of detected corre-
spondences by different algorithms. Both ACC and GS perform excellently on this task.
It is challenging to beat them, which are very recent methods designed specifically for
object matching. However, our simple clustering algorithm outperforms them. We find
our AGDL algorithm performs consistently better than both ACC and GS under differ-
ent settings. AGDL has a higher F-score than both in 95.6% of the random trials under
all the setting combinations. We attribute the success of AGDL to the effective cluster
affinity measure which is robust to noise and outliers.

5 Conclusion

We present a fast and effective method for agglomerative clustering on a directed graph.
Our algorithm is based on indegree and outdegree, fundamental concepts in graph the-
ory. The indegree and outdegree have been widely studied in complex networks, but
have not received much attention in clustering. We analyze their roles in modeling the
structures of data, and show their power via the proposed graph degree linkage algo-
rithm. We demonstrated the superiority of this simple algorithm on image clustering and
object matching. We believe our work provides not only a simple and powerful cluster-
ing algorithm to many applications in computer vision, but also an insightful analysis
of the graph representation of data via indegree and outdegree.
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7 Please see Sec. 9 in the supplemental materials for details of outlier elimination in our algo-
rithm. Different from ACC, which utilizes additional information, i.e., geometrical locations
of feature points, we only use the K-NN graph in outlier elimination.
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