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Many computer vision and image processing problems can be posed as solving partial differential equations
(PDEs). However, designing a PDE system usually requires high mathematical skills and good insight into the
problems. In this paper, we consider designing PDEs for various problems arising in computer vision and
image processing in a lazy manner: learning PDEs from training data via an optimal control approach. We

first propose a general intelligent PDE system which holds the basic translational and rotational invariance
Keywords: . . . . . L .
Optimal control rule for most vision problems. By introducing a PDE-constrained optimal control framework, it is possible
PDEs to use the training data resulting from multiple ways (ground truth, results from other methods, and manual
results from humans) to learn PDEs for different computer vision tasks. The proposed optimal control based
training framework aims at learning a PDE-based regressor to approximate the unknown (and usually
nonlinear) mapping of different vision tasks. The experimental results show that the learnt PDEs can solve
different vision problems reasonably well. In particular, we can obtain PDEs not only for problems that tradi-
tional PDEs work well but also for problems that PDE-based methods have never been tried before, due to the
difficulty in describing those problems in a mathematical way.

Computer vision
Image processing
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1. Introduction

The wide applications of partial differential equations (PDEs) in
computer vision and image processing can be attributed to two
main factors [1]. First, PDEs in classical mathematical physics are
powerful tools to describe, model, and simulate many dynamics
such as heat flow, diffusion, and wave propagation. Second, many
variational problems or their regularized counterparts can often be
effectively solved from their Euler-Lagrange equations. Therefore, in
general there are two types of methods for designing PDEs for vision
tasks. For the first kind of methods, PDEs are written down directly
based on some understandings on the properties of mathematical
operators or the physical natures of the problems (e.g., anisotropic dif-
fusion [2], shock filter [3] and curve-evolution-based equations [4]). The
second kind of methods basically defines an energy functional and then
derive the evolution equations by computing the Euler-Lagrange equa-
tion of the energy functional (e.g., total-variation-based variational
methods [5-7]). In either way, people have to heavily rely on their
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intuition on the vision tasks. Therefore, traditional PDE-based methods
require good mathematical skills when choosing appropriate PDE forms
and predicting the final effect of composing related operators such that
the obtained PDEs roughly meet the goals. If people do not have enough
intuition on a vision task, they may have difficulty in acquiring effective
PDEs. Therefore, current PDE design methods greatly limit the applica-
tions of PDEs to a wider and more complex scope. This motivates us
to explore whether we can acquire PDEs that are less artificial yet
more powerful. In this paper, we give an affirmative answer to this
question. We demonstrate that learning particular coefficients of a gen-
eral intelligent PDE system from a given training data set might be a
possible way of designing PDEs for computer vision in a lazy manner.
Furthermore, borrowing this learning strategy from machine learning
can generalize PDE techniques for more complex vision problems.

The key idea of our general intelligent PDE system is to assume
that the PDEs in sought could be written as combinations of
“atoms” which satisfy the general properties of vision tasks. As a pre-
liminary investigation, we utilize the translational and rotational
invariants as such “atoms” and propose the general intelligent PDE
system as a linear combination of all these invariants' [8]. Then the

T Currently, we only consider the case that the PDEs are linear combinations of fun-
damental differential invariants up to second order.
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problem boils down to determining the combination coefficients
among such “atoms.” This can be achieved by employing the tech-
nique of optimal control governed by PDEs [9], where the objective
functional is to minimize the difference between the expected out-
puts (ground truth) and the actual outputs of the PDEs, given the
input images. Such input-output image pairs are provided by the
user as training samples. Moreover, we also assume that the visual
processing has two coupled evolutions: one controls the evolution
of the output, and the other is for an indicator function that helps col-
lect the global information to guide the evolution. Therefore, our gen-
eral intelligent PDE system consists of two evolutionary PDEs. Both
PDEs are coupled equations between the image and indicator, up to
their second-order partial derivatives.

The theory of optimal control [10] has been well developed for
over 50 years. With the enormous advances in computing power,
optimal control is now widely used in multi-disciplinary applications
such as biological systems, communication networks and socio-
economic systems etc [11]. Optimal design and parameter estimation
of systems governed by PDEs give rise to a class of problems known as
PDE-constrained optimal control [9]. In this paper, a PDE-constrained
optimal control technique as the training tool is introduced for our
PDE system. We further propose a general framework for learning
PDEs to accomplish a specific vision task via PDE-constrained optimal
control, where the objective functional is to minimize the difference
between the expected outputs and the actual outputs of the PDEs,
given the input images. Such input-output image pairs are provided
in multiple ways (e.g., ground truth, results from other methods or
manually generated results by humans) for different tasks. Therefore,
we can train the general intelligent PDE system to solve various vision
problems which traditional PDEs may find difficult or even impossi-
ble, due to their difficulty in mathematical description. In summary,
our contributions are as follows:

1. Our intelligent PDE system provides a new way to design PDEs for
computer vision. Based on this framework, we can design particu-
lar PDEs for different vision tasks using different sources of train-
ing images. This may be very difficult for traditional PDE design
methods. However, we would like to remind the readers that we
have no intention to beat all the existing approaches for each
task, because these approaches have been carefully and specially
tuned for the task.

2. We propose a general data-based optimal control framework for
training the PDE system. Fed with pairs of input and output
images, the proposed PDE-constrained optimal control training
model can automatically learn the combination coefficients in the
PDE system. Unlike previous design methods, our approach
requires much less human wits and can solve more difficult
problems in computer vision.

3. We extend our basic framework for learning a system of PDEs for
vector-valued images. With this framework, the correlation
among different channels of images can be automatically (but im-
plicitly) modeled. To further improve the learning ability of our
framework, we also propose using multi-layer PDE systems. We
show that our framework, as a general tool, is powerful in handling
complex vision tasks with vector-valued images.

The rest of the paper is structured as follows. We first introduce in
Section 2 our intelligent PDE system. In Section 3 we utilize the
PDE-constrained optimal control technique as the training framework
for our intelligent PDE system. In Section 4, we show two possible
ways of extending our basic framework to handle more complicated
vision problems with vector-valued images. Section 5 discusses the
relationships between our work and the previous research. Then in
Section 6 we evaluate our intelligent PDE system with optimal control
training framework by a series of computer vision and image process-
ing problems. Finally, we give concluding remarks and a discussion on
the future work in Section 7.

Table 1
Notations.
Q An open bounded region in R?  9Q Boundary of Q
(xy) (xy)EQ, spatial variable t t<(0,T), temporal variable
Q Qx(0,1) r 90x(0,7)
| The area of a region b d Transpose of matrix (or vector)
(N L? norm tr(-)  Trace of matrix

Vu Gradient of u Hessian of u
P P ={(0,0),(0,1),(1,0),(0,2),(1,1), ( 2 0)}, index set for partial
differentiation

2. Intelligent PDE system

In this section, we introduce our intelligent PDE system and
analyze its invariant property for computer vision problems.

2.1. General intelligent PDE system

We first assume that our PDEs should be evolutionary type be-
cause a usual information process should consist of some (unknown)
steps. The time-dependent operations of the evolutionary PDEs re-
semble the different steps of the information process. Moreover, for
stationary PDEs it is not natural to define their inputs and outputs,
and the existence of their solutions is much less optimistic. Further-
more, we also assume that the PDE system consists of two coupled
PDEs. One is for the evolution of the output image u, and the other
is for the evolution of an indicator function v. The goal of introducing
the indicator function is to collect large-scale information in the
image so that the evolution of u can be correctly guided. This idea is
inspired by the edge indicator in [12] (page 193). So our PDE system
can be written as:

g” —F,(u,v,a)=0, (x,y.t)EQ
(x,y,t)f 0, *xy, t)
u‘[: =Juw ( )
P 0 (1
E—Fv(mu,b) =0, (x,y,t)eQ
v(x,y,t) =0 *x.y. t)
Vieeo = fu (x,y)€Q

where Q is the rectangular region occupied by the input image I, T is
the time that the PDE system finishes the visual information process-
ing and outputs the results, and f, and f, are the initial functions of u
and v, respectively. The meaning of other notations in Eq. (1) can be
found in Table 1. For computational issues and the ease of mathemat-
ical deduction, I will be padded with zeros of several pixels width
around it. As we can change the unit of time, it is harmless to fix
T=1.a={qa;} and b={b;} are sets of functions defined on Q that are
used to control the evolution of u and v, respectively.

2.2. Translationally and rotationally invariant PDE formulation

Although the motivations of different PDE models in computer
vision vary, their formulations are similar, i.e., the most existing
evolutionary PDEs for an image u can be brought to as follows?:

ou

ot _FVu,H,) =0, @)

2 Currently we only limit our attention to second order PDEs because most of the
PDE theories are of second order and most PDEs arising from engineering are also of
second order. It will pose difficulties in theoretical analysis and numerical computation
if higher order PDEs are considered. So we choose to leave the involvement of higher
order derivatives to future work.
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where F is a function of u, Vu and H,,. In this view, the differences
between various PDE models lie in choosing different functions F in
Eq. (2) such that the obtained PDEs roughly meet the goals. As the
space of all these PDEs is infinitely dimensional, people have to heavily
rely on their intuition (e.g., smoothness of edge contour and surface
shading) on the vision task for designing the specific PDE formulation.
Such intuition should be quantified and be described using the opera-
tors (e.g., gradient and Laplacian), functions (e.g., quadratic and square
root functions) and numbers (e.g., 0.5 and 1) that people are familiar
with. Therefore, the designed PDEs can only reflect very limited aspects
of a vision task (hence are not robust in handling complex situations in
real applications) and also appear rather artificial.

In our framework, we provide a new insight to design the PDE
formulation in Eq. (1). Specifically, to find the right form for the PDE sys-
tem, we start with the properties that our PDE system should have, in
order to narrow down the search space. We notice that translationally
and rotationally invariant properties are very important for computer
vision, i.e., in most vision tasks, when the input image is translated or
rotated, the output image is also translated or rotated by the same
amount. So we require that our PDE system is translationally and
rotationally invariant. According to the differential invariant theory [8],
the form of our PDEs (i.e., F, and F,) must be functions of the fundamen-
tal differential invariants under the group of translation and rotation.
The fundamental differential invariants are invariant under translation
and rotation and other invariants can be written as their functions. We
list those up to second order in Table 2, where some notations can be
found in Table 1. In the sequel, we shall use {inv;(u,v)}'S, to refer to
them in order. Note that those invariants are ordered with v going before
u. We may reorder them with u going before v. In this case, the j-th in-
variant will be referred to as inv;(v,u).

As Vu and H, change to RVu and RH,R”, respectively, when the
image is rotated by a matrix R, it is easy to check the rotational invari-
ance of those quantities. So the PDE system (1) is rotationally invari-
ant. Furthermore, for F, and F, to be shift invariant, the control
functions a; and b; must be independent of (x,y). This is summarized
in the following proposition and the proof is presented in Appendix A.

Proposition 2.1. Suppose the PDE system (1) is translationally invariant,
then the control functions {a;}{$ o and {b;}}€o must be independent of
(xy).

So the simplest choice of F, and F, is a linear combination of these
differential invariants, leading to the following forms:

Fy(u,v,a) =" a;(t)inv;(u,v),

Fy(v,u,b) =" by(t)inv;(v,u).
j=0

Table 2
Translationally and rotationally invariant fundamental differential invariants up to the
second order.

j invj(u,v)

0,1,2 1,v,u

34 IVVIZ =2 +v2, IVul? = u? +u?

5 (V) Vu=vyu, + vy,

6,7 tr(Hy) = Vi + Vyy, tr(Hy) =t + 1y

8 (VV)H VY= V3Vyy + 2V Vi + ViV,

9 (VV)TH, V'V = Vil + 2VyVylyy + Villyy

10 (V) H Vi = VitV + (Vally 4 Vy Uy Vay =+ VU Vyy
11 (VV)H, VU = Vil + (Vally + Vyly iy + Vytiy Ly,
12 (VU)H, VU = UdVyy + 2Upliy Vay + UV,

13 (VU) Hy VU = U Uy + 2Ully Ly + UZLyy

14 tr(HZ) = v+ 2v3, + v,

15 tr(HyHy,) = Vilix + 2Vi Uy + Vyyllyy

16 tr(HZ) = ud +2ud, +up,y

3. Training PDEs via an optimal control approach

In this section, we propose an optimal control framework? to train
the intelligent PDE system for particular vision tasks.

3.1. The objective functional

Given the forms of PDEs shown in Eq. (1), we have to determine
the coefficient functions a;(t) and b;(t). We may prepare training sam-
ples {(Im,0m)}M_1, where I, is the input image and Oy, is the expected
output image, and compute the coefficient functions that minimize
the following functional:

M
(b o} {5))%)) =32 folum(xy. 1)=0,d0
6 16
A foaf (tde + %Zujﬂ)bﬁ(t)dt,
0 j=0

(4)

Jj=

where up,(x,y,1) is the output image at time t=1 computed from
Eq.(1) when the input image is I, and A; and p; are positive weighting
parameters. The first term requires that the final output of our PDE
system be close to the ground truth. The second and the third terms
are for regularization so that the optimal control problem is well
posed, as there may be multiple minimizers for the first term.

3.2. Solving the optimal control problem

Then we have the following optimal control problem with PDE
constraints:

. M 16 16
AN 5
Pt (1wt o} o)) ®)
ou, 16
T_FH <umsvm7{aj}jjo> =0, (xy,0)€Q,
Uy (X, y,8) =0, (*,y, )€,
st um|t:0 :fum" (X7y)EQ7 (6)
) ovy 16
W _FV (vm‘, Unp, {bj}]:[)) = 07 (xayv t)EQa
Vm(X,y7t) :07 (X7y7 t)Er
let:O :fvm7 (X7y)€Q

By introducing the adjoint equation of Eq. (6), the Gateaux deriv-
ative (see Appendix B.1) of ] can be computed and consequently, the
(local) optimal {a;}/8o and {b;}/S, can be computed via gradient-
based algorithms (e.g., conjugate gradient). Here we give the form
of adjoint equations and Gateaux derivative directly, while leaving
the deduction details in Appendix C.

3.2.1. Adjoint equation
The adjoint equations of ¢,,, and ¢, can be written as:

%"‘E(um?vm»@mv‘bm) =0, xypEQ,
m =0, (x,y,t)=r,
(Pm|t:1 = 0p—up(1), (*,¥)€Q, (7)
O E Wit b €)= 0, (X9, 020,
by = 0, (*,y,t)<T,
Ple—1 = 0, (*, )€,

3 We sketch the existing theory of optimal control governed by PDEs that we will
borrow in Appendix B.
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where

gPHa (qu(um)(pm + qu(Vm)¢m)

Bt Vi O ) = T (=17 e ,

ECm: U b fm) = 2 (=1 - (%(umz);%; i) :

) = et = 5oy g0 = = Xy T,

1) = gt = 1oy T ) = o1 = 5o P,
0Pu Py

Pa = Gxayt P T oyt

Note that the adjoint equations evolve backwards from t=1 to
t=0.

3.2.2. Gdteaux derivative
With the help of the adjoint equations, at each iteration the
derivatives of ] with respect to a;(t) and bj(t) are as follows:

D M . .
D_({- = Ajaj—ZjQ@mlnvj(um,vm)dQ, j=0,...,16,
J m=1

D i . .
DTg- = “jbj_ZIO¢mlnvj(Vmaum)dgv j=0,...16,
) m=1

where the adjoint functions ¢, and ¢,, are the solutions to Eq. (7).
3.3. Implementation issues

3.3.1. Discretization
To solve the intelligent PDE system and the adjoint equations nu-
merically, we design a finite difference scheme [13] for the PDEs. We

discretize the PDEs, i.e. replace the derivatives% ? and 7 f > with finite

differences as follows:

o _f(t+A—f(t)

gr ]At '

G o ioso o
2

O Fx=1)=200 + fix 1)

The discrete forms of ¥, % and %/ can be defined similarly. In ad-

0y’ 0y2 axa
dition, we discretize the integrations as

Jfxyde=5 3 fxy),

xyFQ

Jyf(eyde = Atz f(i-At),
i=0

where N is the number of pixels in the spatial area, At is a properly

chosen time step size and T,,, = [ﬁ + O.5J is the index of the expected
output time. Then we use an explicit scheme to compute the numer-

ical solutions of Egs. (6) or (7).

3.3.2. Initialization

As the objective functional is non-convex, the convergence of the
minimization process is toward a local minimum which depends on
the initialization. In addition, a good initialization may save a lot of it-
erations. Hence the initialization issue is important for obtaining a

good solution. In our current implementation, we set the initial func-
tions of u and v as the input image:

Ip(x,y),m=1,2,....M.

um(x7y70) = Vm(x7.V7 O) =

Then we employ a heuristic method to initialize the control func-
tions. We fix b;j(t) =0 and initialize g;(t) successively in time, where

j=0,1,

Om— um(

, 16. At each time step, a“—’" is expected to be dn(t) =

so that u,,(t) moves toward the expected output Opm. On
the other hand, by the form of Eq. (1), we want {a;(t)}}

Ii J-Q {Fu <um, Vi, {aj(t)}i) —dm(t)]zd()

= 0 to minimize

v ) (an
=" Jalfnun vma®)=dn(0)] do,
m=1
where
fm(ums Vm) = [invo(um~, Vm)v ) iDVlG(Um, Vm)}Tv
a(t) = [ao (1), ay5(0)]".
So a(t) is the solution to
Fa(t) =d, (12)

where

F= Z Jofm
d= Zjﬂfm(umrvm)dm
m=1

(U, Vi, £)dQ,

(t)dQ.

3.4. The optimal-control-based training framework

We now summarize in Algorithm 1 the optimal control training
framework for the intelligent PDE system. After the PDE system is
learnt, it can be applied to new test images by solving (1), whose inputs
fuand f, are both the test images and the solution u(t)|,— ; is the desired
output image.

4. Extensions

The PDE formulation (1) is for grayscale images only. In practice,
the images in vision tasks are often vector-valued, e.g., color images
and multi-resolution images. To handle vector-valued images, this
section extends the basic PDE formulation (1) to multiple channels,
leading to a more general framework.

Algorithm 1. Optimal control framework for training the PDE system

Input: Training image pairs {(I,,0m)}M_1.

1: Initialize a;(t), t=0, A, ..., 1 —At, by minimizing Eq. (12)
and fix bj(t) =0,j=0, 1, ..., 16. Let up(x, ¥, 0) =v;u(x,y, 0) =
In(x,y),m=1,2,..., M.

2: while not converged do

3 Solve PDEs (6) for u,, and v,,,, m=1, ..., M.

4:  Solve PDEs (7) for (pm and ¢, m=1, ..., M.

5 Compute D’ and 2 Db ,j=0, ..., 16, using Eq. (8).
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6:  Decide the search direction using the conjugate gradient
method [14].

7:  Perform golden search along the search direction and up-
date g;(t) and b;(t), j=0, ..., 16.

8: end while

Output: The coefficient functions {a;(t)}}E o and {b;(t)}}S,.
4.1. Handling vector-valued images

For color images, the design of PDEs becomes much more intricate
because the correlation among different channels should be carefully
handled so that spurious colors do not appear. Without sufficient
intuitions on the correlation among different channels of images,
people either consider a color image as a set of three images and
apply PDEs independently [15], or use LUV color space instead, or
from some geometric considerations [16]. For some vision problems
such as denoising and inpainting, the above-mentioned methods may
be effective. However, for more complex problems, such as Color2Gray
[17], i.e., keeping the contrast among nearby regions when converting
color images to grayscale ones, and demosaicing, i.e., inferring the miss-
ing colors from Bayer raw data [18], these methods may be incapable as
human intuition may fail to apply. Consequently, we are also unaware
of any PDE related work for these two problems.

By introducing fundamental differential invariants involving all
channels and the extra indicator function, the channels are naturally
coupled and the correlation among the channels is implicitly encoded
in the control parameters. Specifically, the modifications on the
framework for vector-valued images include:

1. A single output channel u now becomes multiple channels: uy, k=
1,2, 3.

2. There are more shift and rotationally invariant fundamental differ-
ential invariants. The set of such invariants up to second order is as
follows:

{ LS (V) Vf e, (V) H, Vs te (Hfr) , tr(Hfers> }

where f,, fs and f;;; could be the indicator function or either channel
of the output image. Now there are 69 elements in the set.

3. The initial function for the indicator function is the luminance of
the input image.

4. The objective functional is the sum of J's in Eq. (4) for every
channel.

Note that for vector-valued images with more than three channels,
we may simply increase the number of channels. It is also possible to
use other color spaces. However, we deliberately stick to RGB color
space in order to illustrate the power of our framework. We use the
luminance of the input image as the initial function of the indicator
function because luminance is the most informative component of a
color image, in which most of the important structural information,
such as edges, corners and junctions, is well kept.

4.2. Multi-layer PDE systems

Although we have shown that our PDE system is a good regressor
for many vision tasks, it may not be able to approximate all vision
mappings at a desired accuracy. To improve their approximation
power, a straightforward way is to introduce higher order differential
invariants or use more complex combinations, beyond current linear
combination, of fundamental invariants. However, the form of PDEs
will be too complex to compute and analyze. Moreover, numerical
instability may also easily occur. For example, if we use third-order
differential invariants the magnitude of some invariants could be very

small because many derivatives are multiplied together.* A similar situ-
ation also happens if a bilinear combination of the invariants is used. So
it is not advised to add more complexity to the form of PDEs.

Recently, deep architectures [19,20], which are composed of multi-
ple levels of nonlinear operations, are proposed for learning highly
varying functions in vision and other artificial intelligence tasks [21]. In-
spired by their work, we introduce a multi-layer PDE system. The forms
of PDEs of each layer are the same, i.e., linear combination of invariants
up to second order. The only difference is in the values of the control pa-
rameters and the initial values of all the functions, including the indica-
tor function. The multi-layer structure is learnt by adopting a greedy
strategy. After the first layer is determined, we use the output of the
previous layer as the input of the next layer. The expected output of
the next layer is still the ground truth image. The optimal control pa-
rameters for the next layer are determined as usual. As the input of
the next layer is expected to be closer to the ground truth image than
the input of the previous layer, the approximation accuracy can be suc-
cessively improved. If there is prior information, such a procedure could
be slightly modified. For example, for image demosaicing, we know that
the Bayer raw data should be kept in the output full-color image. So we
should replace the corresponding part of the output images with the
Bayer raw data before feeding them to the next layer. The number of
layers is determined by the training process automatically, e.g., the
layer construction stops when a new layer does not result in output im-
ages with smaller error from the ground truth images.

5. Discussions

In this subsection, we would like to discuss and highlight the rela-
tionship between our intelligent PDE system and some related works.

5.1. Connections to traditional PDEs

5.1.1. Connection to diffusion equations

The mechanism of diffusion has been widely applied to solve
problems arising in computer vision and image processing. The gen-
eral diffusion PDEs can be written as

?)_1: —div(c(x,y,t)Vu) =0 (13)

where c(x,y,t) is the diffusion conductance. If c is a constant, i.e., indepen-
dent of (x,,t), it leads to a linear diffusion equation with a homogeneous
diffusivity, i.e., heat equation [22]. A simple improvement would be to
change c with the location (x,y) in the image, thus converting the equa-
tion into a linear anisotropic diffusion equation with nonhomogeneous
diffusivity, e.g., the work in [23]. If the function c is image dependent,
then the diffusion Eq. (13) becomes a nonlinear diffusion equation, e.g.,
c(IVull?) in the Perona-Malik model [2].

Now we try to understand the above diffusion equations in our in-
telligent PDE system. For isotropic diffusion, it is easy to check that
the heat equation is a special case of Eq. (1) with F,=inv;(u,v). For
anisotropic diffusion, we have that div(cVu)=tr(cH,)+ (Vu)™Vc,
which can be considered as a combination of tr(H,) and Vu with
the pre-defined function c. In this view, we can understand the PDE
system (1) as a more general nonlinear combination of tr(H,) and
Vu with various differentials and coefficients.

5.1.2. Connection to the Mumford-Shah model
Mumford and Shah [24] have proposed to obtain a segmented
image u from f by minimizing the functional

2
Ef(u,K) = [5_[9(u—f)2dx + J.Q/K”VU“ dx + oK,

4 We normalize the grayscales to when computing.
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Fig. 1. The results of denoising images with natural noise. (a) Original noiseless image. (b) Noisy image with real noise. (c-e) Denoised images using ROF, TV-L', and our intelligent
PDEs, respectively. The PSNRs are presented below each image.

where the discontinuity set K consists of the edges and its one- where d is a positive parameter. Minimizing Fy corresponds to the
dimensional Hausdorff measure |K| gives the total edge length. Based following coupled evolutionary PDEs
on the idea to approximate the discontinuity set K by a smooth function

v, the Mumford-Shah functional can be approximated by the following
functional [25]

@—div(VZVu>—B(f—u =0,
Fr(u,v) = | (B(u—f)2+v2||Vu||2+a<dIIVVII2+(1_V)2>>dX i dav + ¥ [vup— 1= .
JAd Q 4d ) T Av+a||Vu|| _HZO'

(a) o © @

Fig. 2. The results of edge detection. (a) Original image. (b-e) Edge detection results using Sobel, Roberts Cross, Prewitt, and our intelligent PDE, respectively.

(e)
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Fig. 3. The results of image blurring and deblurring. The top row are the original images. The second row are the blurring results of a Gaussian kernel. The third row are the blurring
results of our intelligent PDEs. The bottom row are the deblurring results of our intelligent PDEs. The PSNRs are presented below each image.

In the view that div(v?Vu) is also the combination of tr(H,) and
Vu with v, our intelligent PDE system can be considered as replacing
v by its differentials invariants up to second order to generalize and
improve the Mumford-Shah model.

5.2. Compassion to the work in Liu et al. [26]

The work in Liu et al. [26] also proposed a PDE-constrained opti-
mal control framework for image restoration. But in that work, the
authors only designed PDEs involving the curvature operator and
differential invariants for basic image restoration tasks. In contrast,
our work here proposes a more unified and elegant framework for
more complex problems in computer vision.

The major differences between our intelligent PDE system and the
PDEs in [26] are threefold: First, our intelligent PDE system is designed
as a coupled evolutionary PDE with 34 differential invariants of the
image u and the indicator v rather than a diffusion equation with 6
differential invariants of a single image u as in Liu et al. [26]. In this
way, our framework forms a more general regressor to learn the map-
ping between the input and the output.® Furthermore, we proved the
translationally and rotationally invariant properties for our intelligent
PDE system, while the PDEs in Liu et al. [26] cannot be guaranteed
due to the additional curvature operator in their PDE formulation.

Second, the PDEs in Liu et al. [26] was proposed by only considering
the image restoration task, whereas our intelligent PDE system is

5 Note that the differential invariants utilized in [26] is only a subset of Table 2.

designed for the general computer vision tasks, such as image denoising,
edge detection, blurring and deblurring, image segmentation, etc.
Finally, the work in Liu et al. [26] can only handle image restora-
tion problems with grayscale images. In contrast, our proposed
framework can successfully solve various computer vision problems
with both grayscale images and vector-valued images. Therefore, we
obtained PDEs for some problems where traditional PDE methods
have never been tried, such as Color2Gray and image demosaicing.

6. Experimental results

In this section, we apply our optimal control framework to learn
PDEs for five groups of basic computer vision problems: natural
image denoising, edge detection, blurring and deblurring, image
segmentation, Color2Gray and image demosaicing. As our goal is to
show that the data-based optimal control framework could be a new
approach for designing PDEs and an effective regressor for many com-
puter vision tasks, not to propose better algorithms for these tasks, we
are not going to fine tune our PDEs and then compare it with the
state-of-the-art algorithms in every task.

The experiments are categorized into the following five classes:

1. Test learning from ground truth by natural image denoising: {I,,}
are noisy images, {O,,,} are ground truth clean images.

2. Test learning from other methods by edge detection: {I,;} are the
original images, {O,,} are results of other edge detectors.

3. Test learning to solve both primal and inverse problems by blur-
ring and deblurring: {I,,} are the original images, {O,,} are blurred
images for blurring and opposite for deblurring.
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Fig. 4. Examples of the training images for image segmentation. In each group of images, on the left is the input image and on the right is the ground truth output mask.

4, Test learning from humans by image segmentation: {I,,} are the
original images, {O,,} are manually segmented binary masks.

5. Test learning for vector-valued images: {I,,,} are the original images,
{0,,,} are results of using the code provided by [17] for Color2Gray,
and {I,} are the bilinearly interpolated color images, {O,,} are the
original full-color images for demosaicing.

6.1. Learning from ground truth: natural image denoising

Image denoising is one of the most fundamental low-level vision
problems. For this task, we compare our learnt PDEs with the existing
PDE-based denoising methods, ROF [5] and TV-L! [6], on images with
unknown natural noise. This task is designed to demonstrate that our
method can solve problems by learning from the ground truth. This is
the first advantage of our data-based optimal control model. We take
240 images, each with a size of 150 x 150 pixels, of 11 objects using a
Canon 30D digital camera, setting its ISO to 1600. For each object, 30
images are taken without changing the camera settings (by fixing the
focus, aperture and exposure time) and without moving the camera
position. The average image of them can be regraded as the noiseless

ground truth image. We randomly choose 8 objects. For each object
we randomly choose 5 noisy images. These noisy images and their
ground truth images are used to train the PDE system. Then we
compare our learnt PDEs with the traditional PDEs in [5] and TV-L!
[6] on images of the remaining 3 objects.

Fig. 1 shows the comparison results. One can see that the PSNRs of
our intelligent PDEs are dramatically higher than those of traditional
PDEs. This is because our data-based PDE learning framework can easily
adapt to unknown types of noise and obtain PDE forms to fit for the nat-
ural noise well, while most traditional PDE-based denoising methods
were designed under specific assumptions on the types of noise (e.g.,
ROF is designed for Gaussian noise [5] while TV-L! is designed for im-
pulsive noise [27]). Therefore, they may not fit for unknown types of
noise as well as our intelligent PDEs.

6.2. Learning from other methods: Edge detection

The image edge detection task is used to demonstrate that our
PDEs can be learnt from the results of different methods and achieve
a better performance than all of them. This is another advantage of

Fig. 5. The results of image segmentation. The top row are the input images. The second row are the masks obtained by thresholding the mask maps output by our learnt PDEs with
a constant threshold 0.5. The third row are the segmentation results of active contour [31]. The bottom row are the results of normalized cut [32]. The results in the last two rows are

produced using the original code by the authors.
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Fig. 6. The evolution of the mask maps. For each row, the first image is the input image, the second to the fifth are the mask maps at time ¢t =0.25, 0.50, 0.75, 1.0, respectively, and

the last image is the final mask map with a threshold of 0.5.
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Fig. 7. Comparison of the results of Photoshop Grayscale (second column), Color2Gray [17] (third column) and our PDEs (fourth column). The first column are the original color

images. These images are best viewed on screen.

our data-based optimal control model. For this task, we use three
simple first order edge detectors [28] (Sobel, Roberts Cross, and
Prewitt) to generate the training data. We randomly choose 7 images
from the Berkeley image database [29] and use the above three detec-
tors to generate the output images,® together with the input images,
to train our PDE system for edge detection.

Fig. 2 shows part of the edge detection results on other images in the
Berkeley image database. One can see that our PDEs respond selectively
to edges and basically produce visually significant edges, while the edge
maps of other three detectors are more chaotic. Note that the solution to
our PDEs is supposed to be a more or less smooth function. So one can-
not expect that our PDEs produce an exactly binary edge map. Instead,
an approximation of a binary edge map is produced.

5 This implies that we actually use a kind of combination of the results from different
methods to train our PDE system.

6.3. Learning to solve both primal and inverse problems: Blurring and
deblurring

The traditional PDEs for solving different problems are usually of
very different appearance. The task of solving both blurring and
deblurring is designed to show that the same form of PDEs can be

Table 3

Comparison on PSNRs of different demosaicing algorithms. “BI+ 1 layer” denotes the
results of single-layer PDEs using bilinearly interpolated color images as the initial
functions. Other abbreviations carry the similar meaning.

BI AP [33] SA[18] DFAPD [34]

Avg.PSNR (dB) 29.62+291 37.83+2.57 38344256 38.44+3.04
BI+1 layer BI+13 layers DFAPD+1 layer DFAPD + 3 layers
Avg.PSNR (dB) 3625+232 37.80+£2.05 38.9542.93 38.99+2.90
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Full image Zoomed region Bl

SA DFAPD BIl+13 layers

Fig. 8. Comparison of demosaicing results on Kodak images 17, 18 and 23. The first column are the full images. The second column are the zoomed-in regions in the full images. The

third to sixth columns are the demosaicing results of different methods.

learnt to solve both the primal and inverse problems. This is the third
advantage of our optimal control model.

For the image blurring task (the primal problem), the output image
is the convolution of the input image with a Gaussian kernel. So we
generate the output images by blurring high resolution images using
a Gaussian kernel with o=1. The original images are used as the
input. As shown in the third row of Fig. 3, the output is nearly identical
to the ground truth (the second row of Fig. 3). For the image deblurring
task (the inverse problem), we just exchange the input and output im-
ages for training. One can see in the bottom row of Fig. 3 that the out-
put is very close to the original image (first row of Fig. 3).

6.4. Learning from humans: Image segmentation

Image segmentation is designed to demonstrate that our PDE sys-
tem can learn from the human behavior directly (learn the segmenta-
tion results provided by humans, e.g., manually segmented masks).

For image segmentation, it is a highly ill-posed problem and there
are many criteria that define the goal of segmentation, e.g., breaking
an image into regions with similar intensity, color, texture, or
expected shape. As none of the current image segmentation algo-
rithms can perform object level segmentation well out of complex
backgrounds, we choose to require our PDEs to achieve a reasonable
goal, namely segmenting relatively darker objects against relatively
simple backgrounds, where both the foreground and the background
can be highly textured and simple thresholding cannot separate
them. So we select 60 images from the Corel image database [30]
that have relatively darker foregrounds and relatively simple back-
grounds, but the foreground is not of uniformly lower gray levels
than the background, and also prepare the manually segmented bina-
ry masks as the outputs of the training images, where the black
regions are the backgrounds (Fig. 4).

Part of the segmentation results is shown in Fig. 5, where we have
set a threshold for the output mask maps of our learnt PDEs with a
constant 0.5. We see that our learnt PDEs produce fairly good object
masks. We also test the active contour method by Li et al. [31]7 and
the normalized cut method [32]%. One can see from Fig. 5 that the
active contour method cannot segment object details due to the
smoothness constraint on the object shape and the normalized cut
method cannot produce a closed foreground region. To provide a
quantitative evaluation, we use the F-measure that merges the preci-
sion and recall of segmentation:

(1 + a)-recall-precision

F, = —
@ a-precision + recall ’
where
recall = [AnB| precision = ANB]
Al Bl

in which A is the ground truth mask and B is the computed mask. The
most common choice of ais 2. On our test images, the F, measures of
our PDEs, [31] and [32] are 0.90+ 0.05, 0.83 4+0.16 and 0.6140.20,
respectively. One can see that the performance of our PDEs is better
than theirs, in both visual quality and quantitative measure.

We also present the evolution process of the mask maps across time
(Fig. 6). One can see that although the foreground is relatively darker
than the background, the PDEs correctly detect the most salient

7 Code is available at http://www.engr.uconn.edu/~cmli/.
8 Code is available at http://www.cis.upenn.edu/~jshi/software/.
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Fig. 9. Average PSNRs of each layer's output on training and testing images.

points/edges and then propagate the information across the fore-
ground region, resulting in a brighter output region for the foreground.

6.5. Learning for vector-value images

In this subsection, we test our extended framework on two new
vision applications, Color2Gray and demosaicing in which, to the
best of our knowledge, PDEs have never been applied to before.

6.5.1. Color2Gray

We test our extended framework on the Color2Gray problem [17].
Contrast among nearby regions is often lost when color images are
converted to grayscale by naively computing their luminance
(e.g., using Adobe Photoshop Grayscale mode). Gooch et al. [17] pro-
posed an algorithm to keep the contrast by attempting to preserve
the salient features of the color image. Although the results are very
impressive, the algorithm is very slow: 0(S*) for an SxS square
image. To learn the Color2Gray mapping, we choose 50 color images
from the Corel database and generate their Color2Gray results using
the code provided by Gooch et al. [17]. These 50 input-output
image pairs are the training examples of our intelligent PDE system.
We test the learnt PDEs on images in Gooch et al. [17] and their
Web sites.® All training and testing images are resized to 150x 150.
Some results are shown in Fig. 7.'° One can see (best viewed on
screen) that our PDEs produce comparable visual effects to theirs.
Note that the complexity of mapping with our PDEs is only O(5?):
two orders faster than the original algorithm.

6.5.2. Image demosaicing

Commodity digital cameras use color filter arrays (CFAs) to cap-
ture raw data, which have only one channel value at each pixel. The
missing channel values for each pixel have to be inferred in order to
recover a full-color image. This technique is called demosaicing. The
most commonly used CFAs are Bayer pattern [33,18,34]. Demosaicing
is very intricate as many artifacts, such as blur, spurious color and zip-
per, may easily occur, and numerous demosaicing algorithms have
been proposed (e.g., [33,18,34]). We show that with our intelligent
PDE system, demosaicing also becomes easy.

We use the Kodak image database!" for the experiment. Images 1-
12 are used for training and images 13-24 are used for testing. To

9 http://www.cs.northwestern.edu/~ago820/color2gray/.
10 Due to resizing, the results of Color2Gray in Fig. 7 are slightly different from those
in Gooch et al. [17].
1 The 24 images are available at http://www.site.uottawa.ca/~edubois/demosaicking.

reduce the time and memory cost of training, we divide each 512x
768 image to 12 non-overlapping 150x 150 patches and select the
first 50 patches with the richest texture, measured in their variances.
Then we downsample the patches into Bayer CFA raw data, i.e., keeping
only one channel value, indicated by the Bayer pattern, for each pixel.
Finally, we bilinearly interpolate the CFA raw data (i.e., for each channel
the missing values are bilinearly interpolated from their nearest four
available values) into full-color images and use them as the input im-
ages of the training pairs. Note that bilinear interpolation is the most
naive way of inferring the missing colors and many artifacts can occur.
For comparison, we also provide results of several state-of-the-art algo-
rithms [33,18,34] with the matlab codes provided by their authors.
From Table 3, one can see that the results of multi-layer PDEs initialized
with bilinear interpolation (BI) are comparable to state-of-the-art algo-
rithms (also see Fig. 8). Our intelligent PDE system can also improve the
existing demosaicing algorithms by using their output as our input
images (see Table 3 for an example on DFAPD [34]). Fig. 9 shows the
advantage of multi-layer PDEs over one-layer PDEs and the existence
of an optimal layer number for both the training and the testing images.

7. Conclusion

In this paper, we have presented a framework for using data-based
optimal control to learn PDEs as a general regressor to approximate
the nonlinear mappings of different visual processing tasks. The exper-
imental results on some computer vision and image processing prob-
lems show that our framework is promising. However, the current
work is still preliminary. So we plan to improve and enrich our work
in the following aspects. First, more theoretical issues should be
addressed for this PDE system. For example, we will try to apply the
Adomian decomposition method [35] to express the exact analytical
solution to Eq. (1) and then analyze its physical properties. It is also at-
tractive to provide deeper theoretical analysis for the indicator function
v. Second, we would like to develop more computationally efficient nu-
merical algorithms to solve our PDE-constrained optimal control prob-
lem (6). Third, we will apply our framework to more vision tasks to find
out to what extent it works.

Acknowledgment

This work is partially supported by the National Natural Science
Foundation of China (Grant Nos. 61272341, 61231002, and 61173103),
the National Natural Science Foundation of China-Guangdong Joint Fund
(Grant No. U0935004), the Training Program of the Major Research


image of Fig.�9
http://www.cs.northwestern.edu/~ago820/color2gray/
http://www.site.uottawa.ca/~edubois/demosaicking

54 R. Liu et al. / Image and Vision Computing 31 (2013) 43-56

Plan of the National Natural Science Foundation of China (Grant No.
91230103) and the Fundamental Research Funds for the Central
Universities. The first author would also like to thank the support
from China Scholarship Council.

Appendix A. Proof of Property 2.1

We prove that the coefficients {a,}
pendent of (x,y).

2o and {b} > o must be inde-

Proof. We prove for F,(u,v,{a;}}$o) in Eq. (1) only. We may rewrite

16 ~
Fu <u7V7 {aj}j:0> = Fu(uvv<,xay7 t)

Then it suffices to prove that f, is independent of (x,y).

By the definition of translational invariance, when I(x,y) changes
to I(x —Xo, y — o) by shifting with a displacement (xo,yo), u(x,y) and
v(x,y) will change to u(x —xo, y —yo) and v(x — xo, y — o), respective-
ly. So the pair u(x —xo, y —yo) and v(x — xo, y — yo) fulfills Eq. (1), i.e.,

u(X—xp,¥Y—Yo)

o Y00 (0, Y Y0 VX0, YY) X.3. 1) = O.

Next, we replace (x —Xo, ¥ —Yo) in the above equation with (x,y)
and have:

au%xt,Y) —Fu(u(x,y),

V(X,Y),X +Xo,Y +Yo,t) = 0.

On the other hand, the pair (u(x,y), v(x,y)) also fulfills Eq. (1), i.e.,

T e y) i,

¥),X,y,t) =

Therefore, F,(u,v,x+X0,y +Yo,t) = Eu(u,v,x,y,t), V(X0,y0) that
confines the input image inside Q. So F, is independent of (x,y). (]

Appendix B. PDE constrained optimal control

Now we sketch the existing theory of PDE constrained optimal
control problem that we have used in Section 3. There are many
types of these problems. Due to the scope of our paper, we only
focus on the following optimal control problem:

| T rrg=-0 wnee
min J(f,g), s.t flx,t)=0, (x,t)eT, (B.1)
Flizos, X<,

where J is a functional, g€/ controls f via the PDE, ¢/ is the admissible
control set and F(*) is a smooth function.

Appendix B.1. Gdteaux derivative

Gateaux derivative is an analogy and also an extension of the usual
function derivative. Suppose J(f) is a functional that maps a function f
on region W to a real number. Its Gateaux derivative (if it exists) is
defined as the function f* on W that satisfies:

(F,6f),, = limw

e—0

for all admissible perturbations &f of f. We may write f* as Y Df

Appendix B.2. Solving problem (B.1) via Gdteaux derivative

We first introduce a Lagrangian function for problem (B.1):

j.59) =108+ [oe[ L ~F0.0)|d0 (82

where the multiplier ¢ can also be considered as adjoint function. It
can be proved that the PDE constraint in Eq. (B.1) is exactly the first
optimality condition of Eq. (B.2): c%,]o =0, where ((117,]0 is the partial
Gateaux derivative of J with respect to ¢. For the second optimality

COHdlthH ﬁ

PDE constraint in Eq. (B.1). One can also have that

=0, we call it the adjoint equation with respect to the

D/ dj
Dg = dg- (B.3)

0 is equivalent to the third optimality conditioné% =0.
Therefore, the problem (B.1) can be numerically solved if we can find
the Gateaux derivative of J with respect to the control g: we may find
the optimal control g via gradient-based algorithms (e.g., conjugate
gradient).

The above theory can be easily extended to systems of PDEs and
multiple control functions. For more details and a more mathemati-
cally rigorous exposition of the above materials, please refer to [9].

D]
Thus Dg

Appendix C. Gateaux derivatives of problem (6)

Now we show how to deduce the Gateaux derivatives of Eq. (6)
with respect to a;(t) and b;(t) at each iteration via adjoint equations.
The Lagrangian function of optimal control system (6) is:

7 (s {a ) (0] fonti e 6t
16

(it fa) {,})
S o)

2 Joon| ' {a),
aaL (vm um,{ };:0)](1@

a;

b,

: ()

+ija¢m[

where ¢, and ¢,, are the adjoint functions.

It is known from the basic theory of optimal control that we can
find adjoint function ¢, by solving another PDE, which is called the
adjoint equation of Eq. (B.1). To find this adjoint equation for ¢y,
we perturb F,(u,v) and F,(v,u) with respect to u. The perturbations
can be written as follows:

F,(u+e¢-ou,v)—F,(u,v)
=g (aai (6u) +g—iz%+ + gﬁ%) +0(¢)
=, w0 gyt o) (€2)
F,(v,u+¢g-6u)—F,(v,u)
P+q
=, Ol gy o0
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where
OF, 16 Oinv;(u,v) T
AR T R T R €3
O, e, Oinvivi) '
Opg(V) = By, ijobijq"’pq = a0y
Then the difference in J caused by perturbing u,, only is
8]11,,, = ]( Uy, + & 6Ly, ) 7j(7 U, ) <C4)

= 5 Jollt + &0) (4. 1)= 0y x,y) "0

— 3 Jolttn(x.y.1)=0,(x.)d0

+J‘Q(Pm{ [(um + 8'6um>[_Fu(um + ghﬁum-vm)} - [(um)r_Fu(umv Vm)} }dQ
+ Jo m{ [Vt —Fv<vm,um+e-6um>]—[(vmn—FV(vm,um)}}dQ
= & [ ot (%7, 1) =0y (X,Y))btt (X, 7, 1)dQ + & [ o @1 (6U4) AQ
0" (bu1y,)
_SIQ (Pm oDer pq( m) aXpayq dQ
U, )
—£fq ¢m(p§ﬁpopq(vm) axna 7-dQ +o(e).

As the perturbation 6u,, should satisfy that
Suy,|r =0 and 6u,,|,_o =0,
due to the boundary and initial conditions of u,,, if we assume that
Culr=0

then integrating by parts, the integration on the boundary I' will
vanish. So we have
6], = €falun(x.y. 1) =0y (x.))oy (x.y, 1)dQ
+ &[0 (@ 61t) (%,Y, 1)Q—¢ [ o (@) B, dQ
¥ (0 (Un)Pm)

- p+q
8'[ PqZEP -1 X9y ou,dQ
or+a (U (V)b )
- —p
8IQ (mz)cp =D OxP Y1 6u,dQ +o(e)

e

— (@) — (=11

(@ + U (X,Y, 1) =0 (x,¥))6(t—1)

01 (Opq ()P + Opg (Vi) b
0xP Oyl

}SumdQ +o(eg).
(C5)

By letting ¢ — 0, we have that the adjoint equation for ¢, is

0
S+ E(ty Vs @) = 0, (0, 0=Q, o
O =0, (x,y,t)T, (€6)
@m‘[zl = Om_um(l)’ (X’y)EQ,
a7
in order that A =0, where
d,

v oo 3 (_UMapw(%q(um)@m+opq<vm>¢m)_

(=P X"y
(C.7)
Similarly, the adjoint equation for ¢, is
a(bm =0 t EQ
at +E(V umv(bm*@m)— ’ (vaa ) ] CS
-0, (x.y.O<T, €8
d)m|t:1 = 07 (X7y)EQ

where
04 (0 (tn) G + Ty (Vi) b
- B o piq m pPq m m
E(vaums(bmvgom) - TP ( ]) axpayq !
. dinv;(u,v) 16 , 0inv;(v, u)
Opg() = Z} 0 }T’ Opg(v) = aqu =2 j-obj a Vg
(C9)

The difference in J caused by perturbing g; is

5Jaj:j( ,0;+ £°6a;,. )—j( oG, )
=5 1_’-0( +86a> t—% j_[

- ZjQ‘Pm [(
=¢f (Ajaj.ﬁaj) (t)dt—ng‘ {XM:jowminvj(um, vm)dQ} éadt. (C.10)
m=1

+&-6a; )( )—a; (t)}invj(um,vm)dQ

Thus we have

df M
%:Ajaj—zjo@minvj(u v,)dQ, j=0,...16. (C11)
il m=1
Similarly, we can also have
dj M . .
= ;=" [0 binv;(vy u,)dQ, j=0,....16. (C.12)
J m=1

So by Eq. (B.3), we have that Eqs. (C.11) and (C.12) are also the
Gateaux derivatives of | with respect to a; and bj, respectively.
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