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a b s t r a c t

Agglomerative clustering, which iteratively merges small clusters, is commonly used for clustering
because it is conceptually simple and produces a hierarchy of clusters. In this paper, we propose a novel
graph-structural agglomerative clustering algorithm, where the graph encodes local structures of data.
The idea is to define a structural descriptor of clusters on the graph and to assume that two clusters have
large affinity if their structural descriptors undergo substantial change when merging them into one
cluster. A key insight of this paper to treat a cluster as a dynamical system and its samples as states. Based
on that, Path Integral, which has been introduced in statistical mechanics and quantum mechanics, is
utilized to measure the stability of a dynamical system. It is proposed as the structural descriptor, and the
affinity between two clusters is defined as Incremental Path Integral, which can be computed in a closed-
form exact solution, with linear time complexity with respect to the maximum size of clusters. A
probabilistic justification of the algorithm based on absorbing random walk is provided. Experimental
comparison on toy data and imagery data shows that it achieves considerable improvement over the
state-of-the-art clustering algorithms.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

Clustering is a classical machine learning topic with wide
applications in diverse fields. It includes two major categories
[1,2]: partitional clustering, which determines all clusters at once,
and hierarchical clustering, which creates a hierarchy of clusters in
a bottom-up (or agglomerative) process by merging small clusters
or in a top-down (or divisive) process by dividing large clusters
into small ones. Numerous algorithms have been proposed, such
as k-means [2], spectral clustering [3–8] and affinity propagation
[9], and achieved great success.

This work stands on the success of agglomerative clustering, which
is commonly used because it is conceptually simple and produces
a hierarchy of clusters. Beginning with a large number of initial small
clusters, the agglomerative clustering algorithms iteratively select two
clusters with the largest affinity under certain measures to merge,
until some stopping condition is reached. Therefore, the affinity
measure of clusters is critically important. Linkages, e.g., single linkage,
complete linkage and average linkage [2], define the affinity based on
inter-cluster pairwise distances. Since pairwise distances do not well
capture the global structures of data, complete linkage and average
linkage fail on clustering data with manifold structures. Although
ll rights reserved.
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single linkage performs better in this case, it is very sensitive to noisy
distances. Examples can be found in Fig. 3. Lossy coding theory of
multivariate mixed data [10] characterizes the affinity of two clusters
with the variational coding length of coding the merged cluster
against coding the two clusters separately. It exhibits exceptional
performance for clustering multivariate mixed Gaussian or subspace
data, but is not suitable for data from other distributions. There are
also approaches based on probabilistic models, such as Bayesian
hierarchical clustering [11]. They all assume the forms of underlying
data distributions, which are unknown in many applications.

In this paper, we propose a novel graph-structural agglomera-
tive clustering algorithm. Although the power of graphs has been
extensively exploited in clustering [3,5,12,13], semi-supervised
learning [14,15], and manifold learning [16], they have received
little attention in agglomerative clustering. In our algorithm the
pairwise distances are only used to build a neighborhood graph,
since studies [16] show the effectiveness of using local neighbor-
hood graphs to model data lying on a low-dimensional manifold
embedded in a high-dimensional space. Then a structural descrip-
tor is defined to characterize the global structure of a cluster from
the local information encoded by the graph. It is assumed that two
clusters have large affinity if their structural descriptors undergo
substantial change when merging them into one cluster.

We propose path integral as the structural descriptor of clusters.
Paths are a fundamental concept of graph theory, and are used in
many graph-based algorithms. The description of paths gives rich
information about the data. There has been a lot of research work
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Path Integral = Θ(a c) + Θ(b c) + Θ(c d) + Θ(b d) + Θ(a c d) + Θ(b c d)

Fig. 1. A toy example on the path integral description of a cluster. There are four length-1 paths and two length-2 paths in the cluster. The path integral is computed as the
sum of contributions of these paths. How to obtain each path's contribution is described in Section 3. For clarity, the vertices outside the cluster and the outer links are
not shown.

1 It is equivalent to setting the geometric mean of weights associated with
edges pointing to 3-nearest-neighbors as a, i.e., ð∏n

i ¼ 1∏xj∈N 3
i
wijÞ1=ð3nÞ ¼ a.
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on studying various aspects of paths on graphs, such as finding the
shortest paths between nodes [17,18] or computing the similarity
between two nodes over paths [19,20]. For example, Saerens et al.
[18] proposed the randomized shortest path problem, which
allows a route agent to follow different paths according to some
probability distributions instead of only following the shortest
path connecting a source and a destination. Their proposed model
could be used to measure the dissimilarity between two nodes
accounting for multiple paths. However, the purpose of this paper
is to develop a structural descriptor of clusters, instead of finding
the shortest path between nodes or computing the pairwise
similarities between samples. The concept of path integral was
first introduced in statistical mechanics and quantum mechanics
[21–23], where it summed up the contributions of all possible
paths to the evolution of a dynamical system. In this work, we
provide our own formulation of path integral and its probabilistic
interpretation based on absorbing random walk. If we treat a
cluster as a dynamical system, with vertices as states and edge
weights as transition probabilities between states, then the path
integral measures the stability of the dynamical system, i.e.
randomly starting with any state of the dynamical system, the
probability of remaining within the same system after certain
steps of transitions. An example is shown in Fig. 1. The affinity of
two clusters is defined as the incremental path integral after
merging them. An intuitive explanation is that if two clusters are
closely connected, their stability will greatly increase after mer-
ging them. We show that the incremental path integral can
be computed in a closed-form exact solution, with linear time
complexity with respect to the maximum size of clusters. Experi-
mental comparisons on toy data and imagery data show the
excellent performance of the proposed algorithm and its robust-
ness to parameter settings.

Our algorithm has several advantages compared with existing
methods. First, since it measures the affinity of clusters based on
the neighborhood graph instead of directly on pairwise distances
between any pairs of samples, it can better cluster data on
manifolds and is more robust to noisy distances compared with
linkage algorithms [2] widely used in agglomerative clustering.
Second, different from spectral clustering [3,5] and clustering on
the manifold embedding results, it does not use any relaxation or
approximation. The graph structural merging strategy also makes
our algorithm more robust to noisy links than spectral clustering,
because our structural descriptor involves solving a linear system,
while the spectral clustering utilizes eigen-decomposition. Solving
eigen-vectors is more sensitive to noise than solving a linear
system [24,12]. Examples in the bottom row of Fig. 3 show that
our algorithm can handle for multi-scale data, i.e., a dataset that
contains structures with different densities and sizes, which is the
limitation of spectral clustering [25,26]. Third, it only requires the
pairwise distances or similarities of samples without any assump-
tions on the underlying data distributions. This is useful in the case
when the vector representations of data are not available. There-
fore, it has better flexibility and generalization than other agglom-
erative clustering methods such as lossy coding theory [10] and
Bayesian hierarchical clustering [11].
The paper is organized as follows. For ease of reading, the overall
clustering algorithm is first outlined in Section 2. Then, the
theoretical framework of path integral and incremental path
integral is presented in Section 3. Section 4 provides a probabilistic
interpretation of our algorithm based on absorbing random walk.
Experimental validations and conclusion are given in Sections 5 and
6, respectively.
2. Graph-structural agglomerative clustering

Our algorithm iteratively merges two clusters with maximum
affinity on a directed graph.

Building the digraph. Given a set of sample vectors X ¼ fx1;

x2;…; xng, we build a directed graph G¼ ðV ; EÞ, where V is the set
of vertices corresponding to the samples in X , and E is the set of
edges connecting vertices. The graph is associated with a weighted
adjacency matrix W¼ ½wij�, where wij is the pairwise similarity
between xi and xj defined as

wij ¼
exp −

distði; jÞ2
s2

 !
; if xj∈N K

i ;

0; otherwise:

8>><
>>: ð1Þ

distði; jÞ is the distance between xi and xj, and N K
i is the set of

K-nearest neighbors of xi. If xj∈N K
i , there is an edge pointing from

xi to xj with weight wij. s2 is estimated by s2 ¼ ½∑n
i ¼ 1∑xj∈N 3

i
dist

ði; jÞ2�=½3nð−ln aÞ�.1 K and a are free parameters to be set.
We define a randomwalk model on this directed graph. Denote

the transition probability matrix as P, whose element pij is
the one-step transition probability from vertex i to vertex j. P is
calculated as

P¼D−1W; ð2Þ
where D is a diagonal matrix whose diagonal element dii ¼∑n

j ¼ 1wij,
such that ∑n

j ¼ 1pij ¼ 1. The path integral of a cluster is computed by
summing the paths within the cluster on the directed graph
weighted by transition probabilities.

Affinity measure of clusters. Given two clusters Ca and Cb, their
structural affinity is measured as the amount of incremental path
integral ACa ;Cb when merging them, i.e.,

ACa ;Cb ¼ ðSCa jCa∪Cb−SCa Þ þ ðSCb jCa∪Cb−SCb Þ: ð3Þ
SCa is the path integral descriptor of Ca and sums up all the

paths in Ca. SCajCa∪Cb is the conditional path integral descriptor. All
the paths to be counted lie in Ca∪Cb. However, their starting and
ending vertices must be within Ca. If the vertices in Ca and Cb are
strongly connected, merging them will create many new paths
for the pairs of vertices in Ca, and therefore SCa jCa∪Cb will be much
larger than SCa . Section 4 will show that SCa measures the cluster's
stability, if Ca is treated as a dynamical system. An example for
illustration is shown in Fig. 2. The closed-form expressions of SCa
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Fig. 2. An illustration of incremental path integral. After merging Ca and Cb , there are two new (red) paths which are in Ca∪Cb and whose starting and ending vertices are
both in Ca . Similarly, there are also two new (green) paths for Cb . (For interpretation of the references to color in this figure caption, the reader is referred to the web version
of this article.)

2 When path integral was first proposed in quantum mechanics [21,22], it
was normalized as shown in Eq. (4). Therefore we call sij defined in Eq. (8) as
unnormalized pairwise path integral. Similarly, we call sij

k defined in Eq. (7) as
unnormalized fixed-length path integral.
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and SCajCa∪Cb are given in Eqs. (9) and (12), respectively. The
computational complexity is linear with respect to the maximum
size of clusters. Refer to Section 3.4 for the details of efficient
computation.

Initial clusters. We use a simple nearest neighbor merging algorithm
to obtain initial clusters. First, each sample and its nearest neighbor
form a cluster and we obtain n clusters, each of which has two
samples. Then, the clusters are merged to remove duplicated samples,
i.e., we merge two clusters if their intersection is nonempty, until the
number of clusters cannot be reduced.

The overall algorithm is presented in Algorithm 1.

Algorithm 1. Agglomerative clustering via maximum incremental
path integral.

Input: a set of n sample vectors X ¼ fx1; x2;…;xng, and the
target number of clusters nT.
Build the graph G with k-nearest-neighbors and compute its
weighted adjacency matrix W with Eq. (1);
Get the transition probability matrix P with Eq. (2);
Form nC initial clusters CC ¼ fC1;…; CnC g, i.e., assign each sample
xi to a cluster, using nearest neighbor merging.
while nC4nT do

Search two clusters Ca and Cb, such that
fCa; Cbg ¼ argmaxCa ;Cb∈CCACa ;Cb , where ACa ;Cb is the affinity
measure between Ca and Cb, computed using
ACa ;Cb ¼ ðSCa jCa∪Cb−SCa Þ þ ðSCbjCa∪Cb−SCb Þ:
SCa jCa∪Cb is computed as

SCa jCa∪Cb ¼ 1
jCa j2 1

T
Ca ðI−zPCa∪Cb Þ−11Ca :

And SCa is computed as

SCa ¼ 1
jCaj2 1

T
Ca ðI−zPCa Þ−11Ca :

SCbjCa∪Cb and SCb are computed in a similar way.
CC←fCC\fCa; Cbgg∪fCa∪Cbgg, and nC ¼ nC−1.

end while
Output: CC .

3. Incremental path integral: a structural affinity measure

A key component of the proposed algorithm is to compute path
integral. In this section, we will introduce the theoretical frame-
work of path integral, including its formal definition and efficient
computation.

3.1. Path integral as a structural descriptor

Consider a subgraph GC ¼ ðVC; ECÞ with transition probability
matrix PC corresponding to a cluster C. The path integral of a
cluster is defined as follows.

Definition 3.1. The path integral of a cluster C is

SC ¼
1
jCj2 ∑

γ∈ΓC
ΘðγÞ; ð4Þ

where ΓC is the set of all the paths in C, and ΘðγÞ is the contribution
or weight of a path γ.
The name of path integral comes from quantum mechanics
[21,22]. It was proposed as the functional integral on the path
set in a general form. In our implementation, the quantity SC is
discretized as the sum of weights over all the paths. But we still
inherit the name to make it consistent. The path integral is a
generalization of path counting, via considering the path-specific
weights. If we divide the path set by selecting the starting and
ending vertices of the path, we can rewrite the path integral as
follows:

SC ¼
1
jCj2 ∑

jCj

i;j ¼ 1
sij; ð5Þ

where sij is unnormalized pairwise path integral2 over all the paths
from i to j on GC . Generally speaking, the number of paths in a
cluster C is proportional to jCj2. SC is normalized by being divided
with jCj2, such that the clustering results based on path integral in
later steps are not biased by cluster size; otherwise, the proposed
algorithm prefers to merge large clusters.

3.2. Unnormalized fixed-length path integral

Given the starting vertex i and ending vertex j, the unnorma-
lized fixed-length path integral is the simplest case for discussion.
Let γ ¼ fu0-u1-⋯-uk−1-ukgðu0 ¼ i;uk ¼ j;u1;…;uk−1∈VCÞ
denote any directed path of length k from i to j in GC , i.e., γ is a
sequence of vertex indices from i to j and every two consecutive
vertices us and usþ1 in γ are connected by an edge in the subgraph
GC . We define the contribution of a path γ as

PrðγÞ ¼ pu0u1
pu1u2

…puk−1uk
; ð6Þ

i.e., the probability of the transition from i to j along path γ.

Definition 3.2. Given that ΓðkÞ
ij is the set of all the paths of length k

from i to j on GC , the unnormalized fixed-length path integral over
ΓðkÞ
ij is

sðkÞij ¼ ∑
γ∈ΓðkÞ

ij

Pr ðγÞ ¼ ∑
γ∈ΓðkÞ

ij

∏
k

s ¼ 1
pus−1 ;us

; ð7Þ

where u0 ¼ i, uk ¼ j.

Remark. The value of sðkÞij is also equal to the k-step transition
probability from i to j, under an absorbing random walk model
(refer to the details in Section 4).

3.3. Unnormalized pairwise path integral by integrating paths of
different lengths

All the paths of possible lengths from 1 to ∞ play a role in the
structural descriptor of a cluster. To integrate all the paths, we
define the unnormalized pairwise path integral as the form of a
generating function.
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Definition 3.3. The unnormalized pairwise path integral over all
the paths (of lengths from 1 to ∞) from i to j in GC is defined as a
generating function

sij ¼ δij þ ∑
∞

k ¼ 1
zksðkÞij ¼ δij þ ∑

∞

k ¼ 1
zk ∑

γ∈ΓðkÞ
ij

∏
k

s ¼ 1
pus−1 ;us

; ð8Þ

where u0 ¼ i, uk ¼ j, 0ozo1 and δij is the Kronecker delta function
defined as δij ¼ 1 if i¼ j and δij ¼ 0 otherwise.

Remark. The unnormalized pairwise path integral integrates the
unnormalized fixed-length path integrals of length from 1 to ∞,
with weights controlled by z. The choice of zo1 ensures that short
paths are favored over long paths, because the vertices in a “good”
cluster should be connected by many short paths.

3.4. Computing the path integral

We have the following theorem for efficient computation of the
path integral.

Theorem 3.1. sij always converges, and sij ¼ ½ðI−zPCÞ−1�ij, i.e., the
(i,j)-element of ðI−zPCÞ−1, where PC is the submatrix of P by selecting
the samples in C. If we define SC ¼ ½sij�i;j∈C , we have SC ¼ ðI−zPCÞ−1.
Then, we can compute the path integral as the structural descriptor of
cluster C as follows:

SC ¼ 1
jCj2 1

TSC1¼ 1
jCj2 1

T ðI−zPCÞ−11; ð9Þ

where 1 is all-one column vector.

Proposition 3.2. ðI−zPCÞ is a strictly diagonally dominant matrix
with the ∞-norm condition number no more than ð1þ zÞ=ð1−zÞ.

Refer to Appendix A and Appendix B for the proofs of Theorem 3.1
and Proposition 3.2.

Efficient computation. Note that the inverse of the matrix ðI−zPCÞ
does not need to be explicitly computed. The computation of SC
only involves solving a linear system

ðI−zPCÞy¼ 1; ð10Þ
and then

SC ¼
1
jCj2 1

Ty: ð11Þ

For a large cluster, ðI−zPCÞ is sparse.3 As the sparse linear system
has the nice property in Proposition 3.2 (empirically we choose a
small z in experiments), it can be efficiently solved by iterative
methods [27], with a complexity of OðjCjÞ.

Incremental path integral. Given two clusters Ca and Cb, their
incremental path integral is computed from Eq. (3). Similar to
Theorem 3.1, the conditional path integral in Eq. (3) is computed as

SCa jCa∪Cb ¼
1

jCaj2
1T
Ca ðI−zPCa∪Cb Þ−11Ca ; ð12Þ

where 1Ca is the vector in which the elements corresponding to the
vertices in Ca are all one and other elements are zero.

Finding exemplars of clusters. When the agglomerative cluster-
ing stops, the exemplar of each cluster C can be found by selecting
the sample i with the largest value of

∑
j∈C

ðsji þ sijÞ ¼ ð1T
figðI−zPCÞ−11þ 1T ðI−zPCÞ−11figÞ: ð13Þ

This quantity is the path integral on the paths from any vertex to i
3 Graph G, which is built by K-nearest-neighbors, is not fully connected and
only has a relatively small number of edges. Therefore, its transition probability
matrix P is sparse according to Eq. (1). PC is the submatrix of P by selecting the
samples in C, and is also sparse.
and from i to any vertex in C. It reflects the vertex i's incoming and
outgoing connections to samples in C.

3.5. Discussions

Connection and comparison with diffusion kernels and connectiv-
ity kernels. sij in Eq. (8) can be viewed as the structural similarity
between samples i and j if cluster C is equal to the whole dataset.
This view brings the connection to the von Neumann kernel
[28,29], which is one of the diffusion kernels [19] defined on the
whole graph and has been successfully applied to computing
similarities between vertices [20]. This kernel view has profound
theoretical and practical significance, yet it is not the focus of this
paper. We focus on a novel perspective of characterizing the
structure of a cluster instead of similarities of samples. Note that
our clustering algorithm, from a novel graph structural view of
agglomerative clustering, is significantly different from directly
using the similarities derived from the von Neumann kernel or any
other path-based similarity [30,31] (such as the connectivity
kernel [31]) in an existing clustering algorithm.

The difference exists in three aspects. Firstly, these methods
first re-compute similarities of samples over graphs and then
apply the refined similarities to an existing clustering algorithm.
The strategy of splitting clustering into two steps could be
suboptimal, while our approach directly compares the structural
affinity between clusters without computing similarities of sam-
ples. Since the ultimate goal is to compute the affinity of clusters,
there is no need to have an extra step of re-computing the
similarities of samples. Notice that the objective of diffusion
kernels or connectivity kernels is to optimize sample similarity
instead of cluster affinity. Secondly, diffusion kernels and con-
nectivity kernels compute sample similarities from the whole
graph. When they are used to compare the affinity of two clusters,
samples outside the clusters get involved. Our sij is computed on a
single cluster. Considering the subgraphs of clusters is enough,
since the affinity between clusters is mainly determined by local
structures. Thirdly, in our efficient implementation, sij is actually
not computed and the kernel matrix S¼ ðI−zPÞ−1 is dense. Instead,
the path integral is directly obtained by efficiently solving a sparse
linear system in Eqs. (10) and (11). Experimental results in Section
5 show that our approach outperforms both the diffusion kernel
and the connectivity kernel.

Comparison with commute/hitting time based algorithms. The
commute time [32] and hitting time [33] of a random walk have
been used for clustering. However, they are all implemented in
two steps: computing affinities between samples using commute
time or hitting time, and then applying an existing clustering
algorithm. As previously discussed, this strategy could be sub-
optimal. Our approach computes the affinity between clusters
directly by measuring the structural changes, and our incremental
path integral has significant difference with their affinities.

Comparison with zeta function of a graph. Cycles, i.e., self-
connecting paths, were exploited in zeta function based clustering
[34]. Since our path integral considers all the paths within clusters,
it captures more information of cluster structures.

Deciding the number of clusters. For some clustering tasks in real-
world applications, it is sometimes required to automatically
determine the number of clusters from data. The accurate determi-
nation of cluster numbers is a difficult problem and also a specific
research topic in the field of pattern clustering. For hierarchical
agglomerative clustering, a commonly used idea is to build the
complete hierarchy of clusters. Initialized by viewing each data
point as a cluster, it merges samples to be clusters until all the
samples merge as one cluster. Investigating the largest gaps
between adjacent layers in the dendrogram rationally determines
the number of clusters. For instance, dissimilarity increments are
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Fig. 3. Clustering results on three synthetic datasets (best viewed on screen) (a)–(c). The NMI results are shown in the brackets. The best values are in bold. (a) Synthetic
dataset I, (b) synthetic dataset II, (c) synthetic dataset III.
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applied in [35] and a variational cluster descriptor quantized by the
zeta function of a graph is adopted in our previous work [34]. In
complex networks, a quantizer called Q-function is frequently used
to determine the number of communities (clusters) [36]. The Q-
function is the difference between the number of edges within
communities and the expected number of such edges. The number
of clusters is specified at the maxima of Q-function. Interested
readers may refer to these papers for further investigation. These
techniques can be well applied to our approach to decide the
number of clusters. They are not our contribution, and therefore not
evaluated in this paper.
4. Absorbing random walk: a probabilistic view

An absorbing randomwalk is a special Markov chain which has
absorbing states, i.e., states which once reached cannot be transi-
tioned out of. It provides a probabilistic view of our algorithm. For
a cluster C, we construct an absorbing random walk by setting all
the samples outside C as absorbing states, i.e., pii ¼ 1, pij ¼ 0, for all
i∉C and j≠i.
Theorem 4.1. Let Yk be the state of the random walk at time k. Given
that the random walk starts with a uniform distribution over states in
C, i.e., PrðY0 ¼ iÞ ¼ 1=jCj, for all i∈C, and PrðY0 ¼ iÞ ¼ 0, for all i∉C, we
have

SC ¼ 1
jCj ∑

∞

k ¼ 0
zkPrðYk∈C Y0∈CÞ:

�� ð14Þ

See the proof in Appendix C. Here PrðYk∈CjY0∈CÞ is the probability
of remaining within the cluster after k steps. The absorbing
probability after k steps is

PrðYk∉CjY0∈CÞ ¼ 1−PrðYk∈CjY0∈CÞ: ð15Þ
According to the description of Section 3, from the path integral

point of view, a good cluster with many paths inside the cluster
should maximize SC . According to Theorem 4.1, we can understand
it from another perspective that a good cluster should keep the
state not to be easily absorbed by states outside the cluster. In this
sense, if a cluster is treated as a dynamical system, SC measures its
stability. The conditional path integral SCajCa∪Cb can be understood
in the same way.
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Fig. 4. NMI scores of clustering results on the synthetic datasets I–III after adding different types and different levels of random noise. For each noise level on each dataset,
the experiments repeat for 20 times. The curves are the averages of NMI scores and the bars indicate standard deviations. (a1–c1) For Gaussian noise, the horizontal axis
indicates that the standard deviations of Gaussian distributions range from snoise to 1:8snoise, where snoise is the standard deviation of Gaussian noise on the original datasets
in Fig. 3. (a2–c2) Different levels of structural noise are obtained by randomly removing different proportions (0–35%) of points from the original datasets in Fig. 3.
(a1) Gaussian noise on dataset I, (a2) structural noise on dataset I, (b1) Gaussian noise on dataset II, (b2) structural noise on dataset II, (c1) Gaussian noise on dataset III,
(c2) Structural noise on dataset III.
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Then, to measure the affinity between Ca and Cb, we have
Eq. (3). The first part ðSCa jCa∪Cb−SCa Þ measures the separability of Cb
from Ca∪Cb, by the increasing amount of absorbing probability of
randomwalk started in Ca, if we select the states in Cb from Ca∪Cb and
set them to be absorbing states. Apparently, if Ca and Cb come from
the same cluster, the increasing absorbing probability should be large.
Similar analysis can be applied for the second part ðSCbjCa∪Cb−SCb Þ. This
explains why Eq. (3) is a good affinity measure between clusters.
5. Experiments

We conduct experiments on toy data and multiple benchmark
imagery datasets to evaluate the proposed Path Integral based
Clustering (PIC) algorithm. Eleven representative algorithms
are taken into comparison, i.e., k-medoids (k-med) [2], Average
linkage (A-link), Single linkage (S-link), Complete linkage (C-link)
[2], Affinity Propagation (AP) [9], Normalized Cuts (NCuts) [3],



Table 2
Quantitative clustering results in NMI on imagery data. The best values are in bold.

Dataset USPS MNIST FRGC-T PubFig Caltech-256

k-med 0.310 0.483 0.540 0.363 0.593
AP 0.313 0.451 0.600 0.398 0.509
A-link 0.688 0.845 0.727 0.573 0.721
S-link 0.013 0.012 0.292 0.067 0.045
C-link 0.029 0.022 0.241 0.135 0.069
NCuts 0.628 0.792 0.709 0.537 0.722
NJW 0.619 0.795 0.723 0.553 0.722
CT 0.646 0.831 0.726 0.555 0.732
Zell 0.772 0.865 0.670 0.429 0.710
C-kernel 0.661 0.916 0.727 0.570 0.735
D-kernel 0.623 0.804 0.716 0.562 0.704
PIC 0.825 0.940 0.747 0.602 0.761

Table 3
Quantitative clustering results in CE on imagery data. The best values are in bold.

Dataset USPS MNIST FRGC-T PubFig Caltech-256

k-med 0.661 0.324 0.712 0.723 0.258
AP 0.623 0.382 0.649 0.680 0.392
A-link 0.594 0.205 0.648 0.548 0.173
S-link 0.900 0.779 0.904 0.976 0.828
C-link 0.899 0.778 0.963 0.967 0.827
NCuts 0.433 0.122 0.565 0.538 0.163
NJW 0.419 0.120 0.585 0.538 0.163
CT 0.407 0.101 0.578 0.558 0.157
Zell 0.412 0.206 0.565 0.762 0.277
C-kernel 0.414 0.025 0.596 0.528 0.158
D-kernel 0.444 0.281 0.640 0.558 0.558
PIC 0.246 0.016 0.560 0.504 0.153

Table 1
Statistics of imagery data benchmarks.

Dataset USPS MNIST FRGC-T PubFig Caltech-256

No. of samples 11 000 5139 12 776 5803 600
No. of clusters 10 5 222 60 6
Min. cluster size 1100 980 36 62 100
Max. cluster size 1100 1135 64 100 100
Dimensionality 256 784 2891 2891 4200
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NJW algorithm [5], Commute Time based clustering (CT) [32], Zeta
function based clustering (Zell) [34], connectivity kernel based
clustering (C-kernel) [31], and diffusion kernel based clustering
(D-kernel). Here we use k-medoids instead of k-means because
it can handle the case where distances between points are not
measured by Euclidean distances. Although diffusion kernels
[28,29,19,20] have been used to compute similarities between
samples, we have not found any papers of directly using them for
clustering. In D-kernel, we first use the von Neumann kernel [19]
to compute the similarities of samples and then use the average
linkage algorithm to cluster samples based on the similarities. For
fair comparison, we run A-link, S-link, C-link, NCuts, NJW, CT, Zell,
D-kernel, C-kernel and our algorithm on the graphs built by the
same parameters, which are set as z¼0.01, a¼0.95 and K¼20.

We adopt the widely used Normalized Mutual Information
(NMI) [37] and Clustering Error (CE) [38] to quantitatively evaluate
the performance of clustering algorithms. The NMI quantifies the
normalized statistical information shared between two distribu-
tions. A larger NMI value indicates a better clustering result. The
CE is defined as the minimum overall error rate among all possible
permutation mappings between true class labels and clusters. A
smaller CE value indicates a better clustering result.

5.1. On synthetic data

We first evaluate the algorithms on three synthetic datasets and
the results are visualized in Fig. 3.4 All the algorithms use the
ground-truth cluster numbers as input. The two datasets in the top
rows cannot be clustered in a meaningful way by methods that
assume compact shapes of clusters, like k-medoids, AP, and C-link.
A-link and S-link perform better, but suffer from noisy distances
caused by perturbations. For the multi-scale dataset in the bottom
row, S-link fails. NCuts and NJW do not work well for such multi-
scale data either, even if the scale parameters K and a are
exhaustively explored and the results with the best NMI are
reported. PIC works very well on all these datasets, even simply
using the default parameters. Note that we do not use any advanced
graph construction techniques [25,26], such as using variable
bandwidth. Surprisingly, PIC is not sensitive to the parameters for
graph. When we vary K in the set 10� f1;2;…;5g, and s in the set
s¼ s0 � 2r , r∈f−2:5;−2;…; 2;2:5g, where s0 corresponds to a¼0.95,
the clustering results are almost the same.

We also evaluate the performance of clustering algorithms
under different types and different levels of noise. Fig. 4 shows
the NMI scores of clustering results after adding Gaussian noise or
structural noise to the synthetic datasets I–III in Fig. 3. For each
noise level on each dataset, the experiments repeat for 20 times.
The curves show the average NMI scores and bars show the
standard deviations. In each original dataset in Fig. 3, their multi-
ple structures, and data points belonging to each structure are
perturbed with a Gaussian distribution. Different structures have
different Gaussian noises. In Fig. 4, we increase the standard
4 Because of space limit, only some algorithms are selected.
deviations of the original Gaussian noise by up to 1.8 times. The
experimental results show that the performance of other cluster-
ing methods drops significantly when Gaussian noise increases
and their standard deviations also increase. Our approach is much
more stable under different levels of Gaussian noise. The structural
noise is added by randomly removing a certain proportion of data
points from the original datasets in Fig. 3, such that some cluster
structures may be destroyed. Experimental results show that our
method is much more stable with the existence of structural noise.
The performance of other methods in comparison either decreases
or shows large standard deviations, when a significant portion of
points is randomly removed.

5.2. On imagery data

We carry out experiments on five real image datasets: hand-
written digit images from MNIST and USPS databases,5 cropped
facial images from FRGC ver2.0 [39] and PubFig databases [40],
and object images from Caltech-256 database [41]. For MNIST,
we select all the images of digits from 0 to 4 in the testing set. For
FRGC ver2.0, we use all the facial images in the training set of
experiment 4. For PubFig, we use all the people in the develop-
ment set. We collect the first 100 images of each person, if the
person has more than 100 images. Otherwise, we collect all the
images of the person. For Caltech-256, we use six categories
(hibiscus, ketch, leopards, motorbikes, airplanes, faces-easy), and
select the first 100 images in each category for experiments. For
the other datasets, we use all the images. For digits, we use the
intensities of pixels as features and Euclidean distance. For facial
5 Both are downloaded from http://www.cs.nyu.edu/�roweis/data.html.

http://www.cs.nyu.edu/~roweis/data.html
http://www.cs.nyu.edu/~roweis/data.html


Sample k-medoids A P PIC

Fig. 5. The comparisons of detected exemplars on the Caltech-256 set. The first column is the most difficult sample for clustering in each category, and the other columns are
exemplars of the sample's clusters given by k-medoids, AP and PIC. Incorrect exemplars are marked with a cross.

6 The input parameter of AP is a preference value. Therefore, we search for an
appropriate preference value, so that the number of output clusters is equal to the
number of ground-truth clusters.
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images, we use the local binary patterns as features [42] and χ2

distance. For object images, we use the spatial pyramid features
[43] and χ2 distance. The statistics of the datasets used in our
experiments are summarized in Table 1. The last three sets are
extremely challenging for the clustering task. The faces in the
FRGC-T set have large lighting and expression variations, and some
faces are blurred. The PubFig dataset consists of uncontrolled real-
world faces collected from the internet. The images in the Caltech-
256 set have large intra-category variations.

The quantitative results, measured in NMI and CE, are given in
Tables 2 and 3, respectively. As k-medoids is sensitive to initializa-
tion, we select the result with the smallest intra-cluster variations
among 1000 random runs, and thus its performance is comparable
with AP's.6 S-link and C-link do not perform well on most real
datasets, while A-link performs better. This is due to large intra-
cluster variations and the complex cluster structures in real
datasets. NCuts, NJW, CT, Zell, and C-kernel have good perfor-
mance on most datasets. Our PIC performs the best among all the
algorithms.

To visually compare the algorithms, we use the exemplar of a
cluster to show the clustering result of a given sample. If a sample is in
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an incorrect cluster, the exemplar should not be correct. The results of
k-medoids, AP and PIC on the Caltech-256 set are shown in Fig. 5. Our
PIC algorithm can detect the exemplar of each cluster as introduced in
Section 3.4, while NCuts, NJW, CT, and Zell cannot. The samples are
selected as follows: for each category, we search the sample with the
largest average distance to the other samples in the same category (i.e.,
the most difficult sample for clustering in each category).
6. Conclusion

In this paper, we propose a novel graph-structural agglomera-
tive clustering approach using path integral as the structural
descriptor of clusters and incremental path integral as the affinity
measurement of clusters. The incremental path integral measures
the structural change of clusters after the merging and its closed-
form exact solution can be efficiently computed in a linear time
complexity. A probabilistic view of our algorithm from absorbing
random walk is provided. Extensive experimental comparisons
show that the new algorithm outperforms the state-of-the-art
clustering methods. The success of this new graph-structural
agglomerative framework inspires us to find more effective cluster
descriptors in the future work.
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Appendix A. Proof of Theorem 3.1
Proof. By matrix computations, the (i,j)-element of Pk
C is

½Pk
C�ij ¼ ∑

γ∈ΓðkÞ
ij

∏
k

s ¼ 1
pus−1 ;us

:

By Definition 3.3, we have

sij ¼ δij þ ∑
∞

k ¼ 1
zk ∑

γ∈ΓðkÞ
ij

∏
k

s ¼ 1
pus−1 ;us ¼ δij þ ∑

∞

k ¼ 1
zk½Pk

C�ij

¼ Iþ ∑
∞

k ¼ 1
zkPk

C

" #
ij

¼ ½ðI−zPCÞ−1�ij

By Gershgorin disk theorem [24], the spectral radius of PC has an
upper limit

ρðPCÞ≤max
i∈C

∑
j∈C

jpijj≤1:

So, ρðzPCÞo1, which guarantees that the series Iþ ∑∞
k ¼ 1z

kPk
C

converges. &
Appendix B. Proof of Proposition 3.2
Proof. ∀i∈C, we have ∑j∈Cjpijj≤1. Since zo1, ∑j∈Cjzpijjo1 and thus
j1−zpiij4∑j≠i;j∈Cjzpijj, i.e., ðI−zPCÞ is a strictly diagonally dominant
matrix.
The induced ∞-norm of ðI−zPCÞ is given by

∥ðI−zPCÞ∥∞ ¼max
i∈C

∑
j∈C

jδij−zpijj≤max
i∈C

∑
j∈C

δij þ zpij≤1þ z:

The ∞-norm of ðI−zPCÞ−1 is given by

∥ðI−zPCÞ−1∥∞ ¼ ∥ðI−zPCÞ−11∥∞ ¼ ‖ ∑
∞

k ¼ 0
zkPk

C

 !
1‖∞

≤ ∑
∞

k ¼ 0
zk∥Pk

C1∥∞ ≤ ∑
∞

k ¼ 0
zk ¼ 1

1−z
:

So, we have the condition number

κðI−zPCÞ ¼ ∥ðI−zPCÞ∥∞∥ðI−zPCÞ−1∥∞ ≤
1þ z
1−z

: &

Appendix C. Proof of Theorem 4.1
Proof. Without loss of generality, the index of the vertices are
permuted so that the transition probability matrix is partitioned as

P¼
PC PC;C
PC ;C PC

" #
;

where PC;C is the transition probabilities from the vertices in C to C .
The absorbing randomwalk has the transition probability matrix

P′¼
PC PC;C
0 PC

" #

From (9), we can see that

SC ¼
1
jCj2 1

T ðI−zPCÞ−11¼ 1
jCj2 1

T ∑
∞

k ¼ 0
zkPk

C

 !
1¼ 1

jCj2 1
T
C ∑

∞

k ¼ 0
zkðP′Þk

 !
1C

¼ 1
jCj ∑

∞

k ¼ 0
zk ∑

i∈C;j∈C
PrðY0 ¼ iÞPrðYk ¼ j Y0 ¼ iÞ

��
¼ 1

jCj ∑
∞

k ¼ 0
zkPrðYk∈C Y0∈CÞ: &

��
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